x
Filter:
Filters applied
- Membrane Biology
- Kleyman, Thomas RRemove Kleyman, Thomas R filter
- acid-sensing ion channel (ASIC)Remove acid-sensing ion channel (ASIC) filter
Publication Date
Please choose a date range between 2015 and 2022.
Keyword
- epithelial sodium channel (ENaC)4
- allosteric regulation2
- amiloride2
- Na+ self-inhibition2
- [2-(trimethylammonium) ethyl] methanethiosulfonate bromide.1
- ACIC1
- acid-sensing ion channel1
- blood pressure1
- Caenorhabditis elegans (C. elegans)1
- channel gating1
- degenerin1
- electrophysiology1
- ENaC1
- epithelial Na+ channel1
- extracellular domain1
- genetic polymorphism1
- homology modeling1
- ion channel1
- mechanotransduction1
- methanethiosulfonate1
- MTS1
- MTSES1
- MTSET1
- Xenopus1
Membrane Biology
4 Results
- Research ArticleOpen Access
Accessibility of ENaC extracellular domain central core residues
Journal of Biological ChemistryVol. 298Issue 5101860Published online: March 23, 2022- Lei Zhang
- Xueqi Wang
- Jingxin Chen
- Thomas R. Kleyman
- Shaohu Sheng
Cited in Scopus: 1The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. - Membrane BiologyOpen Access
Analyses of epithelial Na+ channel variants reveal that an extracellular β-ball domain critically regulates ENaC gating
Journal of Biological ChemistryVol. 294Issue 45p16765–16775Published online: September 24, 2019- Xueqi Wang
- Jingxin Chen
- Shujie Shi
- Shaohu Sheng
- Thomas R. Kleyman
Cited in Scopus: 2Epithelial Na+ channel (ENaC)-mediated Na+ transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K+]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the Xenopus oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the β7-strand and its adjacent loop of the α-subunit extracellular β-ball domain. - Membrane BiologyOpen Access
Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit
Journal of Biological ChemistryVol. 291Issue 27p14012–14022Published online: May 4, 2016- Shujie Shi
- Cliff J. Luke
- Mark T. Miedel
- Gary A. Silverman
- Thomas R. Kleyman
Cited in Scopus: 8Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. - Membrane BiologyOpen Access
Functional Roles of Clusters of Hydrophobic and Polar Residues in the Epithelial Na+ Channel Knuckle Domain
Journal of Biological ChemistryVol. 290Issue 41p25140–25150Published online: August 25, 2015- Jingxin Chen
- Evan C. Ray
- Megan E. Yates
- Teresa M. Buck
- Jeffrey L. Brodsky
- Carol L. Kinlough
- and others
Cited in Scopus: 10Background: There are regulatory interactions between ENaC and extracellular factors.Results: Mutations of multiple α subunit knuckle residues activate ENaC by suppressing the inhibitory effect of Na+. Channels lacking the β or γ subunit knuckle have processing defects.Conclusion: Interactions between the α subunit knuckle and palm/finger domains regulate ENaC.Significance: Intrasubunit domain-domain interactions have important regulatory roles.