x
Filter:
Filters applied
- Metabolism
- James, David ERemove James, David E filter
- adipocyteRemove adipocyte filter
Publication Date
Please choose a date range between 2018 and 2020.
Author
- Fazakerley, Daniel J4
- Krycer, James R4
- Cooke, Kristen C3
- Cooney, Gregory J3
- Diaz-Vegas, Alexis3
- Burchfield, James G2
- Elkington, Sarah D2
- Francis, Deanne2
- Hirayama, Akiyoshi2
- Ikeda, Satsuki2
- Quek, Lake-Ee2
- Soga, Tomoyoshi2
- Weiss, Fiona C2
- Caldwell, Stuart T1
- Duan, Xiaowen1
- Fisher-Wellman, Kelsey H1
- Giles, Corey1
- Harney, Dylan J1
- Hartley, Richard C1
- Hoy, Andrew J1
- Humphrey, Sean J1
- Huynh, Kevin1
- Kamei, Yushi1
- Kurdyukov, Sergey1
Keyword
- insulin4
- insulin resistance3
- cell metabolism2
- Drosophila2
- fat tissue2
- glucose2
- metabolic regulation2
- mitochondria2
- oxidative stress2
- adipose tissue1
- fatty acid1
- glucose disposal1
- hydrogen peroxide1
- kinase signaling1
- lactate1
- lipid1
- Mitochondrial dysfunction1
- muscle1
- respiration1
- superoxide ion1
- whole-body glucose homeostasis1
Metabolism
4 Results
- MetabolismOpen Access
Insulin signaling requires glucose to promote lipid anabolism in adipocytes
Journal of Biological ChemistryVol. 295Issue 38p13250–13266Published online: July 28, 2020- James R. Krycer
- Lake-Ee Quek
- Deanne Francis
- Armella Zadoorian
- Fiona C. Weiss
- Kristen C. Cooke
- and others
Cited in Scopus: 20Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride–glycerol. - MetabolismOpen Access
Lactate production is a prioritized feature of adipocyte metabolism
Journal of Biological ChemistryVol. 295Issue 1p83–98Published online: November 5, 2019- James R. Krycer
- Lake-Ee Quek
- Deanne Francis
- Daniel J. Fazakerley
- Sarah D. Elkington
- Alexis Diaz-Vegas
- and others
Cited in Scopus: 26Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. - BioenergeticsOpen Access
Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes
Journal of Biological ChemistryVol. 295Issue 1p99–110Published online: November 19, 2019- James R. Krycer
- Sarah D. Elkington
- Alexis Diaz-Vegas
- Kristen C. Cooke
- James G. Burchfield
- Kelsey H. Fisher-Wellman
- and others
Cited in Scopus: 9Insulin action in adipose tissue is crucial for whole-body glucose homeostasis, with insulin resistance being a major risk factor for metabolic diseases such as type 2 diabetes. Recent studies have proposed mitochondrial oxidants as a unifying driver of adipose insulin resistance, serving as a signal of nutrient excess. However, neither the substrates for nor sites of oxidant production are known. Because insulin stimulates glucose utilization, we hypothesized that glucose oxidation would fuel respiration, in turn generating mitochondrial oxidants. - MetabolismOpen Access
Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation
Journal of Biological ChemistryVol. 293Issue 19p7315–7328Published online: March 29, 2018- Daniel J. Fazakerley
- Annabel Y. Minard
- James R. Krycer
- Kristen C. Thomas
- Jacqueline Stöckli
- Dylan. J. Harney
- and others
Cited in Scopus: 68Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice.