x
Filter:
Filters applied
- Microbiology
- Kim, Dong-HyunRemove Kim, Dong-Hyun filter
- 2020 - 2022Remove 2020 - 2022 filter
Microbiology
2 Results
- Research ArticleOpen Access
Elimination of Aicardi–Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication
Journal of Biological ChemistryVol. 298Issue 3101635Published online: January 24, 2022- Adrian Oo
- Keivan Zandi
- Caitlin Shepard
- Leda C. Bassit
- Katie Musall
- Shu Ling Goh
- and others
Cited in Scopus: 4The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi–Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR–Cas9 gene KO or lentiviral viral protein X–mediated proteosomal degradation. - EnzymologyOpen Access
Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking viral protein X
Journal of Biological ChemistryVol. 295Issue 50p16975–16986Published online: October 2, 2020- Si'Ana A. Coggins
- Dong-Hyun Kim
- Raymond F. Schinazi
- Ronald C. Desrosier
- Baek Kim
Cited in Scopus: 2HIV Type 1 (HIV-1) and simian immunodeficiency virus (SIV) display differential replication kinetics in macrophages. This is because high expression levels of the active host deoxynucleotide triphosphohydrolase sterile α motif domain and histidine-aspartate domain–containing protein 1 (SAMHD1) deplete intracellular dNTPs, which restrict HIV-1 reverse transcription, and result in a restrictive infection in this myeloid cell type. Some SIVs overcome SAMHD1 restriction using viral protein X (Vpx), a viral accessory protein that induces proteasomal degradation of SAMHD1, increasing cellular dNTP concentrations and enabling efficient proviral DNA synthesis.