x
Filter:
Filters applied
- Molecular Biophysics
- Thomas, David DRemove Thomas, David D filter
- FRETRemove FRET filter
Publication Date
Please choose a date range between 2020 and 2021.
Author
- Cornea, Razvan L2
- Svensson, Bengt2
- Aldrich, Courtney C1
- Andrick, Anna K1
- Avery, Adam W1
- Bers, Donald M1
- Denha, Sarah A1
- Guhathakurta, Piyali1
- Hays, Thomas S1
- Kleinboehl, Evan1
- Ko, Christopher Y1
- Launikonis, Bradley S1
- Li, Ang1
- Nikolaienko, Roman1
- Rebbeck, Robyn T1
- Rožman, Kaja1
- Schwarz, Jacob A1
- Singh, Daniel P1
- Stroik, Daniel R1
- Treinen, Levy M1
- Tung, Ching-Chieh1
- Wong King Yuen, Siobhan M1
- Yuen, Samantha L1
- Zhang, Jingyan1
Molecular Biophysics
3 Results
- Research ArticleOpen Access
Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening
Journal of Biological ChemistryVol. 298Issue 1101412Published online: November 15, 2021- Jingyan Zhang
- Daniel P. Singh
- Christopher Y. Ko
- Roman Nikolaienko
- Siobhan M. Wong King Yuen
- Jacob A. Schwarz
- and others
Cited in Scopus: 0The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation–contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. - Research ArticleOpen Access
The transmembrane peptide DWORF activates SERCA2a via dual mechanisms
Journal of Biological ChemistryVol. 296100412Published online: February 10, 2021- Ang Li
- Samantha L. Yuen
- Daniel R. Stroik
- Evan Kleinboehl
- Razvan L. Cornea
- David D. Thomas
Cited in Scopus: 7The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. - Research ArticleOpen Access
Novel drug discovery platform for spinocerebellar ataxia, using fluorescence technology targeting β-III-spectrin
Journal of Biological ChemistryVol. 296100215Published online: December 23, 2020- Robyn T. Rebbeck
- Anna K. Andrick
- Sarah A. Denha
- Bengt Svensson
- Piyali Guhathakurta
- David D. Thomas
- and others
Cited in Scopus: 2Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including β-III-spectrin, α-actinin, filamin, and dystrophin. A β-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant β-III-spectrin ABD and actin in live cells.