x
Filter:
Filters applied
- Molecular Biophysics
- Yu, YeRemove Yu, Ye filter
Publication Date
Please choose a date range between 2016 and 2022.
Author
- Tian, Yun7
- Wang, Jin6
- Cheng, Xiao-Yang5
- Fan, Ying-Zhe5
- Liu, Yan5
- Yang, Yang5
- Guo, Chang-Run4
- Hu, You-Min4
- Huang, Li-Dong4
- Ma, Xue-Fei4
- Sun, Liang-Fei4
- Zhu, Michael X4
- Cao, Peng3
- Li, Lingyong3
- Lu, Xiang-Yang3
- Yang, Xiao-Na3
- Lei, Yun-Tao2
- Li, Xing-Hua2
- Liang, Hong2
- Niu, You-Ya2
- Wang, Wen-Hui2
- Chen, Ping-Fang1
- Cui, Wen-Wen1
- Guan, Li1
Keyword
- ion channel6
- conformational change3
- gating3
- electrophysiology2
- epithelial sodium channel (ENaC)2
- FMRFamide (Phe-Met-Arg-Phe-NH2) peptides2
- ligand-binding protein2
- molecular dynamics2
- neuropeptide2
- P2X receptors2
- purinergic receptor2
- 2-guanidine-4-methylquinazoline (GMQ)1
- 5,5'-dithiobis (2-nitrobenzoic acid)1
- AmP2X1
- ATP1
- ATP-evoked current1
- ATP-gated ion channel1
- CMD1
- DTNB1
- ECD1
- FaNaC channels1
- FMRFamide peptide-gated sodium channel (FaNaC)1
- HEK2931
- HRP1
- LF domain1
Molecular Biophysics
8 Results
- Research ArticleOpen Access
The long β2,3-sheets encoded by redundant sequences play an integral role in the channel function of P2X7 receptors
Journal of Biological ChemistryVol. 298Issue 6102002Published online: April 29, 2022- Xue-Fei Ma
- Ting-Ting Wang
- Wen-Hui Wang
- Li Guan
- Chang-Run Guo
- Xing-Hua Li
- and others
Cited in Scopus: 0P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened β2- and β3-sheets and their linker (loop β2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. - Research ArticleOpen Access
GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6
Journal of Biological ChemistryVol. 297Issue 4101125Published online: August 27, 2021- Pei-Lin Yang
- Xing-Hua Li
- Jin Wang
- Xue-Fei Ma
- Bo-Ying Zhou
- Yuan-Feng Jiao
- and others
Cited in Scopus: 5Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. - Research ArticleOpen Access
A conserved residue in the P2X4 receptor has a nonconserved function in ATP recognition
Journal of Biological ChemistryVol. 296100655Published online: April 22, 2021- Ping-Fang Chen
- Xue-Fei Ma
- Liang-Fei Sun
- Yun Tian
- Ying-Zhe Fan
- Peiwang Li
- and others
Cited in Scopus: 1Highly conserved amino acids are generally anticipated to have similar functions across a protein superfamily, including that of the P2X ion channels, which are gated by extracellular ATP. However, whether and how these functions are conserved becomes less clear when neighboring amino acids are not conserved. Here, we investigate one such case, focused on the highly conserved residue from P2X4, E118 (rat P2X4 numbering, rP2X4), a P2X subtype associated with human neuropathic pain. When we compared the crystal structures of P2X4 with those of other P2X subtypes, including P2X3, P2X7, and AmP2X, we observed a slightly altered side-chain orientation of E118. - ArticleOpen Access
Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors
Journal of Biological ChemistryVol. 294Issue 51p19589–19603Published online: November 14, 2019- Liang-Fei Sun
- Yan Liu
- Jin Wang
- Li-Dong Huang
- Yang Yang
- Xiao-Yang Cheng
- and others
Cited in Scopus: 7Although the extracellular ATP-gated cation channel purinergic receptor P2X5 is widely expressed in heart, skeletal muscle, and immune and nervous systems in mammals, little is known about its functions and channel-gating activities. This lack of knowledge is due to P2X5’s weak ATP responses in several mammalian species, such as humans, rats, and mice. WT human P2X5 (hP2X5Δ328–349) does not respond to ATP, whereas a full-length variant, hP2X5 (hP2X5-FL), containing exon 10 encoding the second hP2X5 transmembrane domain (TM2), does. - Membrane BiologyOpen Access
The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide
Journal of Biological ChemistryVol. 292Issue 52p21662–21675Published online: November 9, 2017- Xiao-Na Yang
- You-Ya Niu
- Yan Liu
- Yang Yang
- Jin Wang
- Xiao-Yang Cheng
- and others
Cited in Scopus: 10The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide–activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. - Membrane BiologyOpen Access
Intersubunit physical couplings fostered by the left flipper domain facilitate channel opening of P2X4 receptors
Journal of Biological ChemistryVol. 292Issue 18p7619–7635Published online: March 16, 2017- Jin Wang
- Liang-Fei Sun
- Wen-Wen Cui
- Wen-Shan Zhao
- Xue-Fei Ma
- Bin Li
- and others
Cited in Scopus: 16P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. - Molecular BiophysicsOpen Access
A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors
Journal of Biological ChemistryVol. 291Issue 15p7990–8003Published online: February 10, 2016- Wen-Shan Zhao
- Meng-Yang Sun
- Liang-Fei Sun
- Yan Liu
- Yang Yang
- Li-Dong Huang
- and others
Cited in Scopus: 21Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. - Molecular BiophysicsOpen Access
Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel
Journal of Biological ChemistryVol. 291Issue 14p7571–7582Published online: February 11, 2016- You-Ya Niu
- Yang Yang
- Yan Liu
- Li-Dong Huang
- Xiao-Na Yang
- Ying-Zhe Fan
- and others
Cited in Scopus: 6FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily.