x
Filter:
Filters applied
- Molecular Biophysics
- Yu, YeRemove Yu, Ye filter
- ligand-binding proteinRemove ligand-binding protein filter
Keyword
- epithelial sodium channel (ENaC)2
- FMRFamide (Phe-Met-Arg-Phe-NH2) peptides2
- ion channel2
- neuropeptide2
- 2-guanidine-4-methylquinazoline (GMQ)1
- acid-sensing ion channels (ASIC)1
- channel gating1
- FaNaC channels1
- FMRFamide peptide-gated sodium channel (FaNaC)1
- ligand-recognition1
- peptide interaction1
- small molecule1
Molecular Biophysics
2 Results
- Membrane BiologyOpen Access
The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide
Journal of Biological ChemistryVol. 292Issue 52p21662–21675Published online: November 9, 2017- Xiao-Na Yang
- You-Ya Niu
- Yan Liu
- Yang Yang
- Jin Wang
- Xiao-Yang Cheng
- and others
Cited in Scopus: 10The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide–activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. - Molecular BiophysicsOpen Access
Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel
Journal of Biological ChemistryVol. 291Issue 14p7571–7582Published online: February 11, 2016- You-Ya Niu
- Yang Yang
- Yan Liu
- Li-Dong Huang
- Xiao-Na Yang
- Ying-Zhe Fan
- and others
Cited in Scopus: 6FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily.