x
Filter:
Filters applied
- Neurobiology
- Du, JianhaiRemove Du, Jianhai filter
- retinaRemove retina filter
Publication Date
Please choose a date range between 2016 and 2019.
Author
- Chao, Jennifer R2
- Djukovic, Danijel2
- Engel, Abbi L2
- Gu, Haiwei2
- Hurley, James B2
- Wang, Yekai2
- Chan, Lawrence1
- Cleghorn, Whitney M1
- Contreras, Laura1
- Dinterman, Marlee1
- Hauer, Allison1
- Huang, Jiancheng1
- Jankowski, Connor1
- Kanow, Mark1
- Knight, Kaitlen1
- Lindsay, Ken J1
- Lohner, Daniel1
- Manson, Megan A1
- Raftery, Dan1
- Raftery, Daniel1
- Rountree, Austin1
- Sadilek, Martin1
- Satrústegui, Jorgina1
- Sweet, Ian R1
Keyword
- amino acid2
- retinal metabolism2
- age-related macular degeneration (AMD)1
- anaerobic metabolism1
- calcium1
- cell metabolism1
- glucose metabolism1
- metabolic regulation1
- metabolic tracer1
- metabolism1
- metabolomics1
- mitochondria1
- mitochondrial metabolism1
- oxidative stress1
- photoreceptor1
- phototransduction1
- proline1
- retinal pigment epithelium1
- tricarboxylic acid cycle (TCA cycle) (Krebs cycle)1
- visual function1
Neurobiology
3 Results
- MetabolismOpen Access
Proline mediates metabolic communication between retinal pigment epithelial cells and the retina
Journal of Biological ChemistryVol. 294Issue 26p10278–10289Published online: May 19, 2019- Michelle Yam
- Abbi L. Engel
- Yekai Wang
- Siyan Zhu
- Allison Hauer
- Rui Zhang
- and others
Cited in Scopus: 42The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. - MetabolismOpen Access
Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side
Journal of Biological ChemistryVol. 292Issue 31p12895–12905Published online: June 14, 2017- Jennifer R. Chao
- Kaitlen Knight
- Abbi L. Engel
- Connor Jankowski
- Yekai Wang
- Megan A. Manson
- and others
Cited in Scopus: 55Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. - MetabolismOpen Access
Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina
Journal of Biological ChemistryVol. 291Issue 9p4698–4710Published online: December 16, 2015- Jianhai Du
- Austin Rountree
- Whitney M. Cleghorn
- Laura Contreras
- Ken J. Lindsay
- Martin Sadilek
- and others
Cited in Scopus: 64Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption.