x
Filter:
Filters applied
- Neurobiology
- Hasegawa, MasatoRemove Hasegawa, Masato filter
- Nonaka, TakashiRemove Nonaka, Takashi filter
Keyword
- amyloid2
- prion2
- synuclein2
- Tau protein (Tau)2
- aggregation1
- ALS (Lou Gehrig disease)1
- casein kinase 1δ1
- fibril1
- frontotemporal lobar degeneration (FTLD)1
- microtubule1
- neurodegenerative disease1
- Parkinson disease1
- phosphorylation1
- protein aggregation1
- protein kinase1
- protein misfolding1
- TAR DNA-binding protein 43 (TDP-43) (TARDBP)1
- TAR DNA-binding protein of 43 kDa (TDP-43)1
Neurobiology
4 Results
- Molecular Bases of DiseaseOpen Access
The Effect of Fragmented Pathogenic α-Synuclein Seeds on Prion-like Propagation
Journal of Biological ChemistryVol. 291Issue 36p18675–18688Published online: July 5, 2016- Airi Tarutani
- Genjiro Suzuki
- Aki Shimozawa
- Takashi Nonaka
- Haruhiko Akiyama
- Shin-ichi Hisanaga
- and others
Cited in Scopus: 58Aggregates of abnormal proteins are widely observed in neuronal and glial cells of patients with various neurodegenerative diseases, and it has been proposed that prion-like behavior of these proteins can account for not only the onset but also the progression of these diseases. However, it is not yet clear which abnormal protein structures function most efficiently as seeds for prion-like propagation. In this study, we aimed to identify the most pathogenic species of α-synuclein (α-syn), the main component of the Lewy bodies and Lewy neurites that are observed in α-synucleinopathies. - Molecular Bases of DiseaseOpen Access
α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly
Journal of Biological ChemistryVol. 291Issue 29p15046–15056Published online: May 19, 2016- Takayuki Oikawa
- Takashi Nonaka
- Makoto Terada
- Akira Tamaoka
- Shin-ichi Hisanaga
- Masato Hasegawa
Cited in Scopus: 54α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. - NeurobiologyOpen Access
Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils
Journal of Biological ChemistryVol. 291Issue 17p8896–8907Published online: February 17, 2016- Shotaro Shimonaka
- Takashi Nonaka
- Genjiro Suzuki
- Shin-ichi Hisanaga
- Masato Hasegawa
Cited in Scopus: 65TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. - Molecular Bases of DiseaseOpen Access
Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1δ Triggers Mislocalization and Accumulation of TDP-43
Journal of Biological ChemistryVol. 291Issue 11p5473–5483Published online: January 14, 2016- Takashi Nonaka
- Genjiro Suzuki
- Yoshinori Tanaka
- Fuyuki Kametani
- Shinobu Hirai
- Haruo Okado
- and others
Cited in Scopus: 75Intracellular aggregates of phosphorylated TDP-43 are a major component of ubiquitin-positive inclusions in the brains of patients with frontotemporal lobar degeneration and ALS and are considered a pathological hallmark. Here, to gain insight into the mechanism of intracellular TDP-43 accumulation, we examined the relationship between phosphorylation and aggregation of TDP-43. We found that expression of a hyperactive form of casein kinase 1 δ (CK1δ1-317, a C-terminally truncated form) promotes mislocalization and cytoplasmic accumulation of phosphorylated TDP-43 (ubiquitin- and p62-positive) in cultured neuroblastoma SH-SY5Y cells.