x
Filter:
Filters applied
- Neurobiology
- Hisanaga, Shin-ichiRemove Hisanaga, Shin-ichi filter
- amyloidRemove amyloid filter
- prionRemove prion filter
Neurobiology
2 Results
- Molecular Bases of DiseaseOpen Access
The Effect of Fragmented Pathogenic α-Synuclein Seeds on Prion-like Propagation
Journal of Biological ChemistryVol. 291Issue 36p18675–18688Published online: July 5, 2016- Airi Tarutani
- Genjiro Suzuki
- Aki Shimozawa
- Takashi Nonaka
- Haruhiko Akiyama
- Shin-ichi Hisanaga
- and others
Cited in Scopus: 59Aggregates of abnormal proteins are widely observed in neuronal and glial cells of patients with various neurodegenerative diseases, and it has been proposed that prion-like behavior of these proteins can account for not only the onset but also the progression of these diseases. However, it is not yet clear which abnormal protein structures function most efficiently as seeds for prion-like propagation. In this study, we aimed to identify the most pathogenic species of α-synuclein (α-syn), the main component of the Lewy bodies and Lewy neurites that are observed in α-synucleinopathies. - NeurobiologyOpen Access
Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils
Journal of Biological ChemistryVol. 291Issue 17p8896–8907Published online: February 17, 2016- Shotaro Shimonaka
- Takashi Nonaka
- Genjiro Suzuki
- Shin-ichi Hisanaga
- Masato Hasegawa
Cited in Scopus: 67TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation.