Advertisement

Isolation of three classes of conditional lethal Chinese hamster ovary cell mutants with temperature-dependent defects in low density lipoprotein receptor stability and intracellular membrane transport.

Open AccessPublished:August 19, 1994DOI:https://doi.org/10.1016/S0021-9258(17)31915-4
      This paper is only available as a PDF. To read, Please Download here.
      Fluorescence-activated cell sorting was used to isolate 19 independent, temperature-sensitive, low density lipoprotein (LDL) receptor-deficient Chinese hamster ovary cell mutants that define three recessive complementation groups, ldlE, ldlF, ldlG. LDL receptor activity, essentially normal at the permissive temperature (34 degrees C), was virtually abolished in the mutants after incubation for 8-12 h at the nonpermissive temperature (39-40.5 degrees C). The mutants died after incubation for > 24 h at 39.5 degrees C. These mutants exhibited two striking and unexpected abnormalities that suggest that they define three genes important for general vesicular membrane traffic. First, LDL receptors were degraded abnormally rapidly at the nonpermissive temperature (chloroquine inhibited this degradation in ldlE and ldlG, but not in ldlF). In ldlE cells, the rapid degradation did not require efficient receptor clustering into coated pits and was not observed for all cell surface proteins. This selective degradation may be due to endocytic missorting. Second, the mutants exhibited temperature-sensitive defects in the posttranslational processing and intracellular transport of many membrane-associated and secreted proteins, including the LDL, mannose 6-phosphate/insulin-like growth factor II, and scavenger receptors, the vesicular stomatitis virus G protein and decay accelerating factor. Although the initial synthesis, folding, and processing of precursor forms of these proteins in the endoplasmic reticulum were apparently normal at the nonpermissive temperature, there was either a delay or a block in oligosaccharide processing associated with endoplasmic reticulum to medial Golgi transport at the nonpermissive temperature. This was accompanied by a dramatic inhibition of total soluble protein secretion. The posttranslational processing defects, the instability of cell surface LDL receptors, and the defective protein secretion exhibited by these mutants suggest that the ldlE-G gene products regulate or participate in reactions that are vital for a variety of secretory and endocytic membrane transport processes. This suggestion is strongly supported by our recent observation that a cDNA encoding a component of the coatomer, epsilon-COP, corrects the mutant phenotypes of ldlF cells (Guo, Q., Vasile, E., and Krieger, M. (1994) J. Cell Biol. 125, 1213-1224). Thus, these mutant cells should prove useful for further genetic and biochemical analysis of the mechanisms underlying intracellular membrane traffic.

      REFERENCES

        • Balch W.E.
        J. Biol. Chem. 1989; 264: 16965-16968
        • Balch W.E.
        Curr. Opin. Cell Biol. 1990; 2: 634-641
        • Bankaitis V.A.
        • Johnson L.M.
        • Emr S.D.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 9075-9079
        • Beckers C.J.
        • Block M.R.
        • Glick B.S.
        • Rothman J.E.
        • Balch W.E.
        Nature. 1989; 339: 397-398
        • Bennett M.K.
        • Scheller R.H.
        Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 2559-2563
        • Bretscher M.S.
        • Thomson J.N.
        • Pearse B.M.F.
        Proc. Natl. Acad. Sci. U. S. A. 1980; 77: 4156-4159
        • Brown M.S.
        • Goldstein J.L.
        Cell. 1975; 6: 307-316
        • Brown M.S.
        • Goldstein J.L.
        Annu. Rev. Biochem. 1983; 52: 223-261
        • Bucci M.
        • Moyer T.W.
        • Brown C.M.
        • Wilson R.B.
        • Murphy R.F.
        Somatic Cell Mol. Genet. 1994; (in press)
        • Cain C.C.
        • Wilson R.B.
        • Murphy R.F.
        J. Biol. Chem. 1991; 266: 11746-11752
        • Caras I.W.
        • Davitz M.A.
        • Rhee L.
        • Weddell G.
        • Martin Jr., D.W.
        • Nussenzweig V.
        Nature. 1987; 325: 545-549
        • Chvatchko Y.
        • Howald I.
        • Riezman H.
        Cell. 1986; 46: 355-364
        • Colbaugh P.A.
        • Kao C.-Y.
        • Shia S.-P.
        • Stookey M.
        • Draper R.K.
        Somatic Cell Mol. Genet. 1988; 14: 499-507
        • Colbaugh P.A.
        • Stookey M.
        • Draper R.K.
        J. Cell Biol. 1989; 108: 2211-2219
        • Cummings R.D.
        • Kornfeld S.
        • Schneider W.J.
        • Hobgood K.K.
        • Tolleshaug H.
        • Brown M.S.
        • Goldstein J.L.
        J. Biol. Chem. 1983; 258: 15261-15273
        • Davis C.G.
        • Lehrman M.A.
        • Russell D.W.
        • Anderson R.G.W.
        • Brown M.S.
        • Goldstein J.L.
        Cell. 1986; 45: 15-24
        • Dermody J.J.
        • Wojcik B.E.
        • Du H.
        • Ozer H.L.
        Mol. Cell. Biol. 1986; 6: 4594-4601
        • de Silva A.M.
        • Balch W.E.
        • Helenius A.
        J. Cell Biol. 1990; 111: 857-866
        • Diaz R.
        • Mayorga L.S.
        • Weidman P.J.
        • Rothman J.E.
        • Stahl P.D.
        Nature. 1989; 339: 398-400
        • Dunphy W.G.
        • Rothman J.E.
        Cell. 1985; 42: 13-21
        • Esko J.D.
        Methods Enzymol. 1986; 129: 237-253
      1. Fisher, A. S. (1992) Characterization of Three Classes of CHO Cell Mutants with Temperature-sensitive Defects in Intracellular Membrane Traffic, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA

        • Freeman M.
        • Ekkel Y.
        • Rohrer L.
        • Penman M.
        • Freedman N.J.
        • Chisolm G.M.
        • Krieger M.
        Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 4931-4935
        • Goldstein J.L.
        • Ho Y.K.
        • Basu S.K.
        • Brown M.S.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 333-337
        • Goldstein J.L.
        • Brown M.S.
        • Anderson R.G.W.
        • Russel D.W.
        • Schneider W.J.
        Annu. Rev. Cell Biol. 1985; 1: 1-39
        • Gottlieb C.
        • Skinner S.A.M.
        • Kornfeld S.
        Proc. Natl. Acad. Sci. U. S. A. 1974; 71: 1078-1082
        • Hara-Kuge S.
        • Kuge O.
        • Orci L.
        • Amherdt M.
        • Ravazzola M.
        • Wiel and F.T.
        • Rothman J.E.
        J. Cell Biol. 1994; 124: 883-892
        • Hardwick K.G.
        • Pelham H.R.
        J. Cell Biol. 1992; 119: 513-521
        • Hearing J.
        • Hunter E.
        • Rodgers L.
        • Gething M.-J.
        • Sambrook J.
        J. Cell Biol. 1989; 108: 339-353
      2. Hobbie, L. J. (1989) The Isolation and Characterization of Three Classes of CHO Cell Mutants with Temperature-sensitive Defects in LDL Receptor Function, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA

        • Hughes-Ryser J.
        • Mel R.
        • Hacobian A.
        • Shen W.C.
        J. Cell. Physiol. 1988; 135: 277-284
        • Kaiden A.
        • Krag S.S.
        Somatic Cell Mol. Genet. 1991; 17: 15-33
        • Kao C.-Y.
        • Draper R.
        J. Cell Biol. 1992; 117: 701-715
        • Kawai S.
        • Nishizawa M.
        Mol. Cell. Biol. 1984; 4: 1172-1174
        • Kingsley D.
        • Krieger M.
        Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 5454-5458
        • Kingsley D.M.
        • Kozarsky K.F.
        • Segal M.
        • Krieger M.
        J. Cell Biol. 1986; 102: 1576-1585
        • Klausner R.D.
        • van Renswoude J.
        • Kempf C.
        • Rao K.
        • Bateman J.L.
        • Robbins A.R.
        J. Cell Biol. 1984; 98: 1098-1101
        • Kodama T.
        • Reddy P.
        • Kishimoto C.
        • Krieger M.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 9238-9242
        • Kodama T.
        • Freeman M.
        • Rohrer L.
        • Zabrecky J.
        • Matsudaira P.
        • Krieger M.
        Nature. 1990; 343: 531-535
        • Kohrer K.
        • Emr S.D.
        J. Biol. Chem. 1993; 268: 559-569
        • Kornfeld R.
        • Kornfeld S.
        Annu. Rev. Biochem. 1985; 54: 631-664
        • Kozarsky K.F.
        • Brush H.A.
        • Krieger M.
        J. Cell Biol. 1986; 102: 1567-1575
        • Kozarsky K.F.
        • Kingsley D.
        • Krieger M.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 4339-4355
        • Kozarsky K.F.
        • Call S.M.
        • Dower S.K.
        • Krieger M.
        Mol. Cell. Biol. 1988; 8: 3357-3363
        • Krieger M.
        Cell. 1983; 33: 413-422
        • Krieger M.
        Trends Biochem. Sci. 1992; 17: 141-146
        • Krieger M.
        • Goldstein J.L.
        • Brown M.S.
        Proc. Natl. Acad. Sci. U. S. A. 1978; 75: 5052-5056
        • Krieger M.
        • Brown M.S.
        • Goldstein J.L.
        J. Mol. Biol. 1981; 150: 167-184
        • Krieger M.
        • Martin J.
        • Segal M.
        • Kingsley D.
        Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 5607-5611
        • Krieger M.
        • Kingsley D.M.
        • Sege R.
        • Hobbie L.
        • Kozarsky K.F.
        Trends Biochem. Sci. 1985; 10: 447-452
        • Krieger M.
        • Reddy P.
        • Kozarsky K.
        • Kingsley D.
        • Hobbie L.
        • Penman M.
        Methods Cell Biol. 1989; 32: 57-84
        • Krieger M.
        • Acton S.
        • Ashkenas J.
        • Pearson A.
        • Penman M.
        • Resnick D.
        J. Biol. Chem. 1993; 268: 4569-4572
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Laurie S.M.
        • Robbins A.R.
        J. Cell. Physiol. 1991; 147: 215-223
        • Lehrman M.A.
        • Schneider W.J.
        • Sudhof T.C.
        • Brown M.S.
        • Goldstein J.L.
        • Russell D.W.
        Science. 1985; 227: 140-146
        • Lehrman M.A.
        • Goldstein J.L.
        • Brown M.S.
        • Russell D.W.
        • Schneider W.J.
        Cell. 1985; 41: 735-743
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol. Chem. 1951; 193: 265-275
        • Malmstrom K.
        • Krieger M.
        J. Biol. Chem. 1991; 266: 24025-24030
        • Marnell M.H.
        • Mathis L.S.
        • Stookey M.
        • Shia S.-P.
        • Stone D.K.
        • Draper R.K.
        J. Cell Biol. 1984; 99: 1907-1916
        • Mellman I.
        • Simons K.
        Cell. 1992; 68: 829-840
        • Merion M.
        • Schlesinger P.
        • Brooks R.M.
        • Moehring J.M.
        • Moehring T.J.
        • Sly W.S.
        Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 5314-5319
        • Musil L.S.
        • Goodenough D.A.
        Cell. 1993; 74: 1065-1077
        • Nakano A.
        • Nishijima M.
        • Maeda M.
        • Akamatsu Y.
        Biochim. Biophys. Acta. 1985; 845: 324-332
        • Newman A.P.
        • Shim J.
        • Ferro-Novick S.
        Mol. Cell. Biol. 1990; 10: 3405-3414
        • Ostermann J.
        • Orci L.
        • Tani K.
        • Amherdt M.
        • Ravazzola M.
        • Elazar Z.
        • Rothman J.E.
        Cell. 1993; 75: 1015-1025
        • Pelham H.R.
        Curr. Opin. Cell Biol. 1991; 3: 585-591
        • Penman M.
        • Lux A.
        • Freedman N.J.
        • Rohrer L.
        • Ekkel Y.
        • McKinstry H.
        • Resnick D.
        • Krieger M.
        J. Biol. Chem. 1991; 266: 23985-23993
        • Pitas R.
        • Innerarity T.
        • Weinstein J.
        • Mahley R.
        Arteriosclerosis. 1981; 1: 177-185
        • Poole B.
        • Ohkuma S.
        J. Cell Biol. 1981; 90: 665-669
        • Presley J.F.
        • Draper R.K.
        • Brown D.T.
        J. Virol. 1991; 65: 1332-1339
        • Pryer N.K.
        • Wuestehube L.J.
        • Schekman R.
        Annu. Rev. Biochem. 1992; 61: 471-516
        • Raths S.
        • Rohrer J.
        • Crausaz F.
        • Riezman H.
        J. Cell Biol. 1993; 120: 55-65
        • Reddy P.
        • Caras I.
        • Krieger M.
        J. Biol. Chem. 1989; 264: 17329-17336
        • Resnick D.
        • Freedman N.J.
        • Xu S.
        • Krieger M.
        J. Biol. Chem. 1993; 268: 3538-3545
        • Robbins A.R.
        • Peng S.S.
        • Marshall J.L.
        J. Cell Biol. 1983; 96: 1064-1071
        • Robbins A.R.
        • Oliver C.
        • Bateman J.L.
        • Krag S.S.
        • Galloway C.J.
        • Mellman I.
        J. Cell Biol. 1984; 99: 1296-1308
        • Roberts C.J.
        • Raymond C.K.
        • Yamashiro C.T.
        • Stevens T.H.
        Methods Enzymol. 1991; 194: 644-661
        • Roff C.F.
        • Fuchs R.
        • Mellman I.
        • Robbins A.R.
        J. CM Biol. 1986; 103: 2283-2297
        • Rohrer L.
        • Freeman M.
        • Kodama T.
        • Penman M.
        • Krieger M.
        Nature. 1990; 343: 570-572
        • Rothberg K.G.
        • Ying Y.
        • Kolhouse J.F.
        • Kamen B.A.
        • Anderson R.G.W.
        J. Cell Biol. 1990; 110: 637-649
        • Rothman J.E.
        • Orci L.
        Nature. 1992; 355: 409-415
        • Rothman J.H.
        • Yamashiro C.T.
        • Kane P.M.
        • Stevens T.H.
        Trends Biochem. Sci. 1989; 14: 347-350
        • Sahagian G.G.
        • Neufeld E.F.
        J. Biol. Chem. 1983; 258: 7121-7128
        • Schwaninger R.
        • Beckers C.J.
        • Balch W.E.
        J. Biol. Chem. 1991; 266: 13055-13063
        • Sege R.D.
        • Kozarsky K.
        • Nelson D.L.
        • Krieger M.
        Nature. 1984; 307: 742-745
        • Segev N.
        • Mulholl and J.
        • Botstein D.
        Cell. 1988; 52: 915-924
        • Sollner T.
        • Whiteheart S.W.
        • Brunner M.
        • Erdjument-Bromage B.H.
        • Geromanos S.
        • Tempst P.
        • Rothman J.E.
        Nature. 1993; 362: 318-324
        • Stanley P.
        Methods Enzymol. 1987; 138: 443-458
        • Stanley P.
        Glycobiology. 1992; 2: 99-107
        • Thompson L.H.
        • Stanners C.P.
        • Simonovitch L.
        Somatic Cell Genet. 1975; 1: 187-208
        • Timchak L.M.
        • Kruse F.
        • Marnell M.H.
        • Draper R.K.
        J. Biol. Chem. 1986; 261: 14154-14159
        • Wang R.H.
        • Colbaugh P.A.
        • Kao C.Y.
        • Rutledge E.A.
        • Draper R.K.
        J. Biol. Chem. 1990; 265: 20179-20187
        • Warren G.
        Nature. 1989; 342: 857-858
        • Warren G.
        Nature. 1993; 362: 297-298
        • Waters M.G.
        • Griff I.C.
        • Rothman J.E.
        Curr. Opin. Cell Biol. 1991; 3: 615-620
        • Wilson D.W.
        • Wilcox C.A.
        • Flynn G.C.
        • Chen E.
        • Kuang W.J.
        • Henzel W.J.
        • Block M.R.
        • Ullrich A.
        • Rothman J.E.
        Nature. 1989; 339: 355-359
        • Yamashiro D.
        • Maxfield F.
        J. Cell Biol. 1987; 105: 2713-2721
        • Yamashiro D.
        • Maxfield F.
        J. Cell Biol. 1987; 105: 2723-2733
        • Yoshimura A.
        • Yoshida T.
        • Seguchi T.
        • Waki M.
        • Ono M.
        • Kuwano M.
        J. Biol. Chem. 1987; 262: 13299-13308
        • Zuber C.
        • Roth J.
        • Misteli T.
        • Nakano A.
        • Moreman K.
        Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 9818-9822