Advertisement

The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.

Open AccessPublished:October 15, 1985DOI:https://doi.org/10.1016/S0021-9258(17)38940-8
      This paper is only available as a PDF. To read, Please Download here.
      By using very low concentrations of cells to minimize alterations in substrate concentrations, we demonstrated that the lactate/pyruvate ratio of the incubation medium, which determines the cytosolic NADH/NAD+ ratio, affects gluconeogenic flux in suspensions of isolated hepatocytes from fasted rats. At a fixed extracellular pyruvate concentration of 1 mM and with the lactate/pyruvate ratio varied from 0.6 to 10 and to 50, glucose production rates increased from 2.5 to 5.5 and then decreased to 1.8 nmol/mg of cell protein/min. This finding paralleled the observation of Sugano et al. (Sugano, T., Shiota, M., Tanaka, T., Miyamae, Y., Shimada, M., and Oshino, N. (1980) J. Biochem. (Tokyo) 87, 153-166) who noted a similar biphasic response in the perfused liver system when lactate was held constant and pyruvate varied. The biphasic relationship can be explained by the influence of the NADH/NAD+ ratio on the near-equilibrium reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase in the hepatocyte cytosol. By shifting the equilibrium of the glyceraldehyde-3-phosphate dehydrogenase reaction, a rise in the NADH/NAD+ ratio decreases the concentration of 3-phosphoglycerate which, because of the linkage of 3-phosphoglycerate to phosphoenolpyruvate through two near-equilibrium reactions, reduces the concentration of phosphoenolpyruvate and therefore causes a decline in flux through pyruvate kinase. This decrease in pyruvate kinase flux results in an enhanced gluconeogenic flux. At higher NADH/NAD+ ratios, however, the oxalacetate concentration drops to such an extent that the consequent decreased flux through phosphoenolpyruvate carboxykinase exceeds the decline in flux through pyruvate kinase, producing a decrease in gluconeogenic flux. The lactate/pyruvate ratio was found to influence the actions of three hormones thought to stimulate gluconeogenesis by different mechanisms. Except for an inhibition by glucagon seen at the lowest lactate/pyruvate ratio tested, the stimulations by this hormone were relatively insensitive to lactate/pyruvate ratios, while angiotensin II produced greater stimulations of gluconeogenesis as the lactate/pyruvate ratio was increased. Dexamethasone, added in vitro, stimulated gluconeogenesis significantly only at very low and very high lactate/pyruvate ratios.

      REFERENCES

        • Tischler M.E.
        • Friedrichs D.
        • Coll K.
        • Williamson J.R.
        Arch. Biochem. Biophys. 1977; 184: 222-236
        • Crabb D.W.
        • Mapes J.P.
        • Boersma R.W.
        • Hems R.A.
        Arch. Biochem. Biophys. 1976; 173: 658-666
        • Siess E.A.
        • Brocks D.G.
        • Lattke H.K.
        • Wieland O.H.
        Biochem. J. 1977; 166: 225-235
        • Williamson D.H.
        • Lund P.
        • Krebs H.A.
        Biochem. J. 1967; 103: 514-527
        • Hohorst H.J.
        • Kreutz F.H.
        • Reim M.
        Biochem. Biophys. Res. Commun. 1961; 4: 159-162
        • Hohorst H.J.
        • Kreutz F.H.
        • Reim M.
        Biochem. Biophys. Res. Commun. 1961; 4: 163-168
        • Williamson J.R.
        • Browning E.T.
        • Scholz R.
        J. Biol. Chem. 1969; 244: 4607-4616
        • Williamson J.R.
        • Scholz R.
        • Browning E.T.
        • Thurman R.G.
        • Fukami M.H.
        J. Biol. Chem. 1969; 244: 5044-5054
        • Exton J.H.
        • Park C.R.
        J. Biol. Chem. 1969; 244: 1424-1433
        • Ross B.D.
        • Hems R.
        • Krebs H.A.
        Biochem. J. 1967; 102: 942-951
        • Garrison J.C.
        • Haynes Jr., R.C.
        J. Biol. Chem. 1973; 248: 5333-5343
        • Sugano T.
        • Shiota M.
        • Tanaka T.
        • Miyamae Y.
        • Shimada M.
        • Oshino N.
        J. Biochem. (Tokyo). 1980; 87: 153-166
        • Seglen P.O.
        Methods Cell Biol. 1976; 13: 29-83
        • Lowry O.H.
        • Passoneau J.V.
        A Flexible System of Enzymatic Analysis.
        Academic Press, New York1972: 175 (200, 203, 213)
        • Czok R.
        Bergmeyer H.U. Methods of Enzymatic Analysis. Academic Press, New York19741424
        • Lowry G.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol. Chem. 1951; 193: 265-275
        • Siess E.A.
        • Brocks D.G.
        • Wieland O.H.
        Sies H. Metabolic Compartmentation. Academic Press, New York1983: 235-257
        • Bucher T.
        • Brauser B.
        • Conze A.
        • Klein F.
        • Langguth A.
        • Sies H.
        Eur. J. Biochem. 1972; 27: 301-317
        • Mapes J.P.
        • Harris R.A.
        J. Biol. Chem. 1976; 251: 6189-6196
        • Rognstad R.
        Biochem. Biophys. Res. Commun. 1975; 63: 900-905
        • Krebs H.A.
        Adv. Enzyme Regul. 1968; 6: 467-480
        • Rognstad R.
        Int. J. Biochem. 1976; 7: 403-408
        • Rognstad R.
        • Katz J.
        J. Biol. Chem. 1977; 252: 1831-1833
        • Foster J.L.
        • Blair J.B.
        Arch. Biochem. Biophys. 1978; 189: 263-276
        • Veech R.L.
        • Raijman L.
        • Krebs H.A.
        Biochem. J. 1970; 117: 499-503
        • Groen A.K.
        • Vervoorn R.C.
        • Wanders R.J.A.
        • Van der Meer R.
        • Tager J.M.
        Biochim. Biophys. Acta. 1982; 721: 172-177
        • Groen A.K.
        • Vervoorn R.C.
        • Van der Meer R.
        • Tager J.M.
        J. Biol. Chem. 1983; 258: 14346-14353
        • Rolleston F.S.
        • Newsholme E.A.
        Biochem. J. 1967; 104: 524-533
        • Williamson J.R.
        J. Biol. Chem. 1965; 240: 2308-2321
      1. Groen, A. K. (1984) Ph.D. dissertation, University of Amsterdam

        • Keech D.B.
        • Utter M.F.
        J. Biol. Chem. 1963; 238: 2609-2614
        • Patel T.B.
        • Barron L.L.
        • Olson M.S.
        J. Biol. Chem. 1984; 259: 7525-7531
        • Sistare F.D.
        • Haynes Jr., R.C.
        J. Biol. Chem. 1985; 260: 12754-12760
        • Sistare F.D.
        • Haynes Jr., R.C.
        J. Biol. Chem. 1985; 260: 12761-12768