Mechanisms of Acylation of Chymotrypsin by Phenyl Esters of Benzoic Acid and Acetic Acid*

COlIN D. HUBBARD AND T. SCOTT SHOuPE†
From the Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

The kinetics of the acylation of α-chymotrypsin by a series of substituted phenyl p-nitrobenzoates have been studied by stopped flow and conventional spectrophotometry. Electron withdrawal in the leaving group accelerates the rate of acylation, and the \(p \) value obtained for eight esters is +1.96. The pH- and pD-independent acylation rate constants are, respectively, \(1.40 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) and \(1.25 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) for p-nitrophenyl p-nitrobenzoate, and, respectively, \(2.19 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) and \(1.68 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) for p-nitrophenyl benzoate at 25°C. An analysis of structure-reactivity results and kinetic solvent isotope effects indicates a mechanism for acylation by phenyl benzoates in which initial reaction is a nucleophilic attack by an imidazole of the enzyme (His 57). Subsequently, there is rapid transfer of the acylating group to the serine 195 from the acylimidazole species.

The kinetic solvent isotope effects for acylation by p-nitrophenyl phenyl acetate and p-nitrophenyl hydrocinnamate, in 5%, v/v, acetonitrile, are 1.3 and 2.0, respectively. The latter ester is inhibited more than is p-nitrophenyl p-nitrobenzoate, and, respectively, \(1.40 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) and \(1.25 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \) for p-nitrophenyl benzoate when 5%, v/v, dioxane is substituted for 5%, v/v, acetonitrile as co-solvent. In the presence of 5%, v/v, dioxane a change in the kinetic solvent isotope effect to 1.7 is found for p-nitrophenyl benzoate and p-nitrophenyl phenylacetate while that for the analogous hydrocinnamate ester is unaffected. The results for the latter substrate are in accord with a general base-catalyzed mechanism.

Electron-withdrawing groups in the phenyl ring of phenyl acetates accelerate the enzyme acylation yielding a leaving group \(p \) of 2.05. The kinetic solvent isotope effects for acylation by p-nitrophenyl thiolacetate and by p-nitrophenyl acetate are close to 2.0. The mechanism of acylation of chymotrypsin by phenyl acetates is not unambiguously defined using these data.

\[\text{R-C-OR'} + E \xrightleftharpoons[K_r]{K_s} \text{R-C-OR} + E \xrightarrow{k_2} \text{R-C-O} + \text{R'OH} \]

The reaction for nonspecific ester substrates proceeds by general base activation of Ser 195, which in turn acts as a nucleophile (11) (Scheme 1). It was concluded from a comparison of the magnitude of \(p \) for reactions of various nucleophiles and of chymotrypsin with substituted p-nitrophenyl and 2,4-dinitrophenyl benzoates that chymotrypsin acts as a neutral rather than anionic nucleophile toward these substrates. Kinetic solvent isotope ratios and other data together with the \(p \) analysis led to the suggestion that in the case of phenyl benzoates acylation may occur by direct nucleophilic attack by the imidazole of His 57, yielding a transient acylimidazole which rapidly collapses to the Ser 195 acylated enzyme (12) (Scheme 2). Since the substrates studied were nonspecific, it does not seem unreasonable to expect that the geometry of their interaction with the active site of the enzyme might be sufficiently different from that for physiological substrates to provide for an alternate mechanism of acylation.

Because Scheme 2 seems to apply only to phenyl benzoates (although earlier it was thought that in addition phenyl acetates would react in an analogous manner) and because of the reports (8, 9) that acylation can only proceed through the general base-catalyzed pathway, it was appropriate to conduct further experiments which shed light upon the pathway for the acylation of chymotrypsin by these phenyl esters.

The effect of leaving group substituents upon the rate of acylation by a series of substituted phenyl p-nitrobenzoates has been studied. A very good correlation of the polarity of the substituent in the leaving group with the rate constant for acylation has been obtained. This result, supported by further solvent deuterium isotope data, and when examined in con-
Mechanisms of Acylation of Chymotrypsin

The reaction of substituted phenyl acetates with chymotrypsin has been studied. The results obtained, earlier data, and solvent deuterium isotope effects yield a clear picture for the mechanism, although now more evidence points toward the general base catalysis pathway for the acylation of phenyl esters of aliphatic acids.

Experimental Procedures

Materials—Three times crystallized α-chymotrypsin was obtained from Worthington Biochemical Corp. N-trans-Cinnamoylimidazole (Eastman) was recrystallized from sodium-dried n-hexane yielding a purified product with a melting point of 132.0 to 132.7 (literature m.p. 133.0 to 133.5 (Ref. 13). Acetonitrile was redistilled from P2O5. Dioxane, spectrophotometric grade, was obtained from Aldrich as was deuteric acid, 99.6%. Deuterium chloride, a 58% solution in 99% D2O, was supplied by Stohler Isotope Chemicals.

Esters—The p-nitrophenyl benzoate esters (p-H and p-NO2) were those previously used (7). The following esters were prepared by conventional methods (12): p-cyanophenyl p-nitrobenzoate, p-bromo-phenyl p-nitrobenzoate, p-chlorophenyl p-nitrobenzoate, m-nitro-phenyl p-nitrobenzoate, m-acetylphenyl p-nitrobenzoate, p-chloro-phenyl p-nitrobenzoate, p-chlorophenyl acetate, p-cyanophenyl aceta- te, p-nitrophenyl thiolacetate, p-nitrophenyl phenylacetate, and p-nitrophenyl hydrocinnamate, p-Nitrophenyl acetate and phenyl acetate were purchased from Aldrich and purification was effected by recrystallization from ethanol and distillation, respectively. All other materials used were reagent grade.

Methods—The operational normality of chymotrypsin was determined according to the method of Schonbaum et al. (13). For experiments carried out in D2O, buffers were prepared in the manner described previously (7). The pH values of D2O solutions were estimated from the formula pH = pD + 0.40 (14).

Kinetics—Acylation rates for the phenyl benzoate esters and p-nitrophenyl thiolacetate were monitored under pseudo-first order conditions with initial enzyme concentration in at least 10-fold excess. The acylations by p-nitrophenyl p-nitrobenzoate, p-nitrophenyl benzoate, and p-nitrophenyl thiolacetate were followed in a Gibson-Durrum stopped-flow spectrophotometer at the appropriate wavelength for the absorption of the phenolic product. Conditions for the determination of the pH-dependence rate profiles for acylation and procedures for subsequent analysis of the experimental data are outlined elsewhere (1). The pH(±0.1)-rate profiles were fit by χ square analysis using a computer program.

Acylations by the remaining p-nitrobenzoates were followed in a Cary 14 recording spectrophotometer fitted with a thermostated cell holder and a 0.1 to 0.2 absorbance unit slide wire. Reactions were initiated by rapid addition of microliter quantities of substrate in acetonitrile to the thermostated solution of enzyme in buffer medium in the reaction cuvette, and the disappearance of substrate was monitored at the appropriate wavelength. Blanks of enzyme solution of identical initial concentrations were used. The resulting absorbance versus time tracings were tested for first order kinetics by linear regression analysis using the program library STAPACK from the University of New Hampshire computer center.

Acylations of substituted phenyl acetates were studied under second order conditions by monitoring the appearance of the phenolic product in the Cary 14. Second order rate constants for acylation by p-nitrophenyl acetate and p-cyanophenyl acetate were determined by the method of Bender et al. (15), but because of competing deacylation, the rate constants for p-chlorophenyl acetate and phenyl acetate were determined from the initial rates of reaction. Pseudo-first order and second order conditions gave identical second order rate constants for p-nitrophenyl acetate, as did application of an earlier method (15) and the initial rate procedure for the second order acylation by p-cyanophenyl acetate.

Results

Acylation by Phenyl p-Nitrobenzoates—The composite second order rate constants for the acylation of chymotrypsin, k2/K0, (7), determined for eight m- and p-substituted phenyl p-nitrobenzoates at pH 5.05, are collected in Table I. A low pH was chosen to reduce the rates of reaction in order that those which must be monitored in the ultraviolet range could be followed in a conventional recording spectrophotometer. In order to have confidence that the acylation by different substrates has the same pH dependence, the reactions of three esters with substituents of widely varying polarities were examined at four pH values between 5 and 7. The resulting Hammett plots constructed at each pH by plotting the log of the second order rate constant versus σ′ yielded ρ values of 1.8, 1.8, 1.8, and 1.7 at pH values of 5.0, 5.5, 6.0, and 7.0, respectively. Previous studies have also shown the efficacy of studying the catalytic mechanism of chymotrypsin at low pH (18).

To monitor the acylation reaction the disappearance of substrate was followed, whereas in previous studies (7, 19), the appearance of phenolic product was monitored. In order to

![Scheme 1](image-url)

![Scheme 2](image-url)

Table I

Kinetic parameters for acylation of chymotrypsin by substituted phenyl p-nitrobenzoates at pH 5.05

<table>
<thead>
<tr>
<th>Substituent</th>
<th>k2/K0a</th>
<th>σ′b</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NO2</td>
<td>1.270</td>
<td>1.00</td>
</tr>
<tr>
<td>p-CN</td>
<td>0.668</td>
<td>0.89</td>
</tr>
<tr>
<td>p-Cl</td>
<td>0.570</td>
<td>0.227</td>
</tr>
<tr>
<td>p-Br</td>
<td>0.565</td>
<td>0.232</td>
</tr>
<tr>
<td>m-NO2</td>
<td>0.727</td>
<td>0.71</td>
</tr>
<tr>
<td>m-COCN</td>
<td>0.265</td>
<td>0.376</td>
</tr>
<tr>
<td>m-Cl</td>
<td>0.409</td>
<td>0.373</td>
</tr>
<tr>
<td>m-Br</td>
<td>0.390</td>
<td>0.391</td>
</tr>
</tbody>
</table>

a Values in parentheses are standard deviation of the mean.
b The values of σ′ were taken from Leffler and Grunwald (16). A value of 1.00 is used for σ′ for the p-NO2 substituent, as suggested in Ref. 17, and is subsequently used throughout.

Program kindly written by Dr. Robert Carrier of the University of New Hampshire.
assure that both procedures yield the same kinetic data, the acylation of chymotrypsin by p-nitrophenyl benzoate was monitored by both methods at pH 5.05 (0.1 M acetate; 5%, v/v, CH,CH). The resulting second order rate constants derived from the disappearance of substrate and the appearance of product are 346 ± 10 M⁻¹s⁻¹ and 363 ± 11 M⁻¹s⁻¹, respectively. These are statistically equivalent; therefore, it is justifiable to compare kinetic parameters obtained by both methods.

Acylation of Chymotrypsin by Phenyl Acetates

The second order acylation rate constants are determined for a series of four p-substituted phenyl acetates at pH 7.47 (0.1 M phosphate; 5%, v/v, CH,CH). The rate constant obtained for p-nitrophenyl acetate, 1425 M⁻¹s⁻¹, is comparable to the rate constant obtained previously at pH 7.58 in 4.60% CH₂CN, 1370 M⁻¹s⁻¹ (20). These kinetic parameters are compiled in Table II along with values for a different series of phenyl acetates presented in a previous study (19). Since the experiments of this previous study were carried out at pH 7.92 in 10% CH₂CN, their values, for the purpose of comparison, were normalized to give the same rate constant for p-nitrophenyl acetate as was found in this study.

Acylation Rates as Functions of pH and pD

The rates of the acylation reactions of p-nitrophenyl p-nitrobenzoate, BzONp, and p-nitrophenyl thiocarbonate were determined as a function of pH and pD. The values of pK₁, pK₂ and the pH(pD)-independent rate constant, kₚM-W', were determined from a nonlinear regression analysis of Equation 2 (21) and are reported in Table III.

\[k = \frac{k_{PMW'}}{1 + [\text{H}']/K_1 + K_2/[\text{H}']} \] (2)

The resulting solvent deuterium isotope effects (kₚM/W'/kₚH₂O) on acylation are 1.14, 1.30, and 2.10, for p-nitrophenyl p-nitrobenzoate, BzONp, and p-nitrophenyl thiocarbonate, respectively.

The dependence of the acylation rate constants on pH and pD for acylation by PAONp and HCONp in the pH range of 7.50 to 8.30 and the pD range 7.93 to 8.66 was determined. The pH- and pD-independent rate constants were estimated from the graphs of pH and pD versus kₚ/kₚM-W'. The solvent deuterium isotope effects for PAONp and HCONp are 1.3 and 2.0, respectively. Rate constants for acylation by PAONp and HCONp were determined in water at pH 8.0, and in deuterium oxide at pD 8.4, in the presence of 5% (v/v) dioxane. The results are compiled in Table III.

Discussion

Reactivity-Substituent Polarity Correlation for Leaving Group - Application of structure-reactivity correlations to the mechanistic probing of reactions of enzymes with substrates can be of great value as long as the unique character of enzymatic reactions is taken into consideration (5, 22). The acylation of chymotrypsin involves two processes (Equation 1): the initial enzyme-substrate equilibrium to form the non-covalent Michaelis complex, and the actual acylation step which involves redistribution of covalent bonds. Alteration of the structure of the substrate could be manifested in either process. It is therefore important to know the potential effect of structure variation on each step before mechanistic conclusions are drawn since the second order rate constants in this study are composites of the enzyme-substrate equilibrium constants, Kₛ, and the first order rate constant for acylation, kₚ. Previous work has shown that variation of polar substituents on the phenolic leaving groups of ester substrates would be unlikely to affect Kₛ (23, 24). Therefore, a structure-reactivity correlation constructed by plotting the logarithm of kₚ/Kₛ versus the appropriate substituent parameter will reflect the effect of the electronic nature of the substituent on the transition state for acylation as manifested in the first order rate constant, kₚ.

Construction of a Hammett plot for the acylation by substituted phenyl p-nitrobenzoates using the σ⁻ substituent parameter yielded a ρ of 1.96 ± 0.30 (correlation coefficient, r = 0.934). The σ⁻ substituent charge on the phenolic oxygen generated in the transition state will be stabilized by resonance. A better correlation is obtained for the p-CN and p-NO₂ substituents using this procedure in line with the proposition that σ⁻ gives better linearity than σ for many reactions of phenols and phenolic esters (16). A plot for this correlation is shown in Fig. 1.

While leaving group ρ values and Brønsted β values are normally correlated with the relative nucleophilicities of the attacking and leaving groups, it can be seen by comparison of the leaving group ρ values presented in Table IV that a ρ value of 1.96 is consistent with imidazole being the primary nucleophile for acylation by phenyl p-nitrobenzoate esters.

A composite Hammett plot for the acylation by phenyl acetates including rate constants from this study and normalized rate constants from the study of Bender and Nakamura (19) is shown in Fig. 2. A ρ value of 2.05 ± 0.32 is obtained. Again, this value appears to be consistent with imidazole being the nucleophile, but in light of solvent deuterium isotope effects of approximately two for acylation by p-nitrophenyl acetate and p-nitrophenyl thiocarbonate, the mechanism of acylation by phenyl acetates is unclear and will be discussed below.

In order to provide insight into the significance of the ρ obtained for nonspecific phenyl p-nitrobenzoates, it is of interest to compare this value with those obtained for substi-

* The abbreviations used are: BzONp, p-nitrophenyl benzoate; PAONp, p-nitrophenyl phenylacetate; HCONp, p-nitrophenyl hydrocinnamate.

Table II

Kinetic parameters for acylation of chymotrypsin by substituted phenyl acetates at 25°C

<table>
<thead>
<tr>
<th>Phenyl substituent</th>
<th>kₚ/Kₛ* M⁻¹s⁻¹</th>
<th>σ⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NO₂</td>
<td>1425 (39)</td>
<td>1.00</td>
</tr>
<tr>
<td>p-CN</td>
<td>420 (11)</td>
<td>0.89</td>
</tr>
<tr>
<td>p-Cl</td>
<td>29.6 (0.7)</td>
<td>0.228</td>
</tr>
<tr>
<td>p-H</td>
<td>3.9 (0.1)</td>
<td>0.0</td>
</tr>
<tr>
<td>p-CHO</td>
<td>574</td>
<td>1.13</td>
</tr>
<tr>
<td>m-NO₂</td>
<td>55.9</td>
<td>0.71</td>
</tr>
<tr>
<td>m-CHO</td>
<td>40</td>
<td>0.35</td>
</tr>
<tr>
<td>m-COCH₃</td>
<td>11.6</td>
<td>0.38</td>
</tr>
</tbody>
</table>

* Values given in parentheses are standard deviation of the mean.
The acylation rate constants, k^{im}, were obtained from use of
Equation 2 when a complete pH (pD) dependence profile for acylation
was obtained. The pK_a values, characteristic of acylation, are also
reported. Where pK_a values are not reported, the k^{im} values were
estimated from acylation rate constants in the pH (pD)-independent
region of the profiles. The co-solvent was either 5% (v/v) acetonitrile
or 5% (v/v) dioxane, and the buffer either 0.1 M acetate, 0.1 M
phosphate, or 0.1 M pyrophosphate.

<table>
<thead>
<tr>
<th>Ester</th>
<th>pK_1</th>
<th>pK_2</th>
<th>k^{im}</th>
<th>Solvent</th>
<th>$k_{\text{H}2\text{O}}/k{\text{D}_2\text{O}}$</th>
<th>pK_1</th>
<th>pK_2</th>
<th>k^{im}</th>
<th>Solvent</th>
<th>$k_{\text{H}2\text{O}}/k{\text{D}_2\text{O}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Nitrophenyl p-nitrobenzoate</td>
<td>6.80</td>
<td>9.39</td>
<td>14.0</td>
<td>H_2O</td>
<td>1.14</td>
<td>7.31</td>
<td>9.79</td>
<td>12.3</td>
<td>H_2O</td>
<td>1.35</td>
</tr>
<tr>
<td>p-Nitrophenyl benzoate</td>
<td>7.03</td>
<td>9.14</td>
<td>2.19</td>
<td>D_2O</td>
<td>1.30</td>
<td>0.52</td>
<td>9.72</td>
<td>1.68</td>
<td>D_2O</td>
<td>0.82</td>
</tr>
<tr>
<td>p-Nitrophenyl thiocacetate</td>
<td>6.97</td>
<td>9.20</td>
<td>2.02</td>
<td>H_2O</td>
<td>0.96</td>
<td>7.24</td>
<td>10.20</td>
<td>2.10</td>
<td>D_2O</td>
<td>1.30</td>
</tr>
<tr>
<td>p-Nitrophenyl phenylacetate</td>
<td>57</td>
<td>43</td>
<td>1.30</td>
<td>H_2O</td>
<td>10.9</td>
<td>10.9</td>
<td>1.30</td>
<td>D_2O</td>
<td>1.7</td>
<td>D_2O</td>
</tr>
<tr>
<td>p-Nitrophenyl hydrocinnamate</td>
<td>510</td>
<td>250</td>
<td>2.0</td>
<td>H_2O</td>
<td>101</td>
<td>101</td>
<td>2.0</td>
<td>D_2O</td>
<td>2.0</td>
<td>D_2O</td>
</tr>
</tbody>
</table>

A summary of the extrathermodynamic relationships for
the acylation of chymotrypsin by a variety of ester substrates
is of interest. In this study and a previous one (7) Hammett ρ
values for the variation of substituents on the acyl and
phenolic positions of substituted phenyl benzoates were
determined to be 0.97 ± 0.11 and 1.96 ± 0.30, respectively.
These ρ values are internally consistent in approximating
model reactions of neutral nitrogen nucleophiles rather than
strong anionic oxygen nucleophiles. Leaving group substitu-
ten effects for three series of specific phenyl esters yield ρ
values of less than 1, which are similar to values obtained for
oxygen nucleophiles such as the hydroxide ion. Recently the
acylation by a series of acyl-substituted aliphatic p-nitro-
phenyl esters was examined (20), and the substituent effects
upon the second order acylation rate constants were analyzed
using the Taft-Ingold relationship. Contributions of polar,
steric, and specific effects were separated and a ρ^*,
representing the polar contributions of the substituents, was
found to be 2.18 ± 0.17, a value consistent with nucleophilic
attack by anionic oxygen. Assuming that aliphatic nitro-
phenyl esters acylate by the conventional general base mech-

![FIG. 1. Hammett plot of the rate constants for acylation of chymo-
trypsin by substituted phenyl p-nitrobenzoates at pH 5.05 (0.1 M
acetate buffer) and 25°. Acetonitrile (5%, v/v) was present as co-
solvent.]
an isotope effect upon the acylation by phenyl benzoates. Present work extended this study to examine the isotope effects upon the acylation by phenyl p-nitrobenzoate and BzONp with the resulting values being 1.14 and 1.30, respectively (Table III). A transition state with rate-determining nucleophilic acylation mechanism involving rate-determining nucleophilic attack by imidazole would require no such proton transfer in the transition state. Unequivocal analysis of solvent isotope effects for enzyme reactions is difficult at best (22), therefore solvent isotope effects of approximately one are consistent with, but not unequivocal proof of, nucleophilic attack by the imidazole of His 57.

Imidazole to Serine Acyl Transfer—A basic implication of an acylation mechanism involving rate-determining nucleophilic attack by imidazole is a subsequent rapid acyl transfer to the serine hydroxyl (8). Acetylimidazole is a very reactive acylating agent and has a large neutral rate of hydrolysis (33). Since the acetyl group is readily transferred to unactivated water, it is possible to postulate that the acyl group could be transferred to the serine hydroxyl without further activation. Such a transfer would also be favored if spatial juxtaposition brought the serine oxygen within bonding distance of the carbonyl carbon of the acyl group, which seems a reasonable assumption considering the compact nature of the active site (34).

Significance of Perturbed pKₐ of Ser 195—Recently there has been some discussion of the identity of the ionizing group with a pKₐ of 7 in the catalytic triad of Asp 102, His 57, and Ser 195 (35–38). One implication of this proposed system is the possibility that the apparent pKₐ of Ser 195 is perturbed from near 13 for the free amino acid to approximately 7. Calculations on the active site of chymotrypsin have predicted a serine pKₐ, of approximately 8 (39), and there is precedent for large perturbations of the pKₐ of amino acid residues in enzymes (40, 41). An operational pKₐ of approximately 7 would render the Ser 195 moiety the better leaving group in the transition state on the general base-activated path to the serine-acylated substrates. This situation would be reflected in a large positive ρ since σ⁻ substituent constants for phenols parallel their relative basicities. A relatively low pKₐ for serine can provide an attractive explanation for the observed leaving group ρ values for the phenyl p-nitrobenzoates and phenyl acetates without having to invoke an acylimidazole intermediate, but it leaves unexplained the ρ of 0.97 found for the variation in the acyl portion of a series of p-nitrophenyl benzoates and the observed solvent deuterium isotope effects. The above alternate explanation of the magnitude of the leaving group ρ values for two series of nonspecific ester substrates entails speculation and some contradiction, but until a more detailed and direct determination of the pKₐ values of the active site components is made it cannot be ignored.

Solvent Deuterium Isotope Effects upon Acylation of Chymotrypsin by Homologous Series of p-Nitrophenyl Esters—The efficiency of binding in the "tosyl hole" of the chymotrypsin active site increases in the series BzONp, PAONp, and HCONp (24). Isotope effects of 1.30, 1.3, and 2.0 (Table III) were found for acylation by these three esters, respectively. An isotope effect of approximately 2 for acylation by HCONp is consistent with all or part of the hydrocinnamoyl side chain being optimally bound in the "tosyl hole," presumably orienting the ester carbonyl for attack by the general base-activated hydroxyl of Ser 195. The much lower isotope effect for acylation by BzONp has been explained earlier. These two extremes in isotope effect would seem to be consistent with a unique binding of the benzoate ester, with little dependence on tosyl hole binding, leading to initial acylation at His 57, and with a strong specific binding of the hydrocinnamoyl ester firmly in the tosyl hole leading to acylation at Ser 195. An examination of a model of the active site of chymotrypsin shows that if the benzyol moiety of BzONp is placed in the tosyl hole, the ester...
carbonyl is not in position for nucleophilic attack by the imidazole of His 57. The isotope effect of 1.3 for acylation by PAONp indicates that the acyl moiety is not in the correct binding mode to facilitate the general base-catalyzed mechanism of reaction.

When the tosyl hole is occupied by dioxane (42, 43), acylation of the enzyme by BzONp is retarded by a factor of 1.6 which is much less than the corresponding factors for acylation by PAONp (3.0) and HCONp (2.6) (Table III). This difference may speak for a different mode of binding for BzONp with less dependence upon binding in the tosyl hole. In a similar vein it has been suggested that dioxane binds to the active site of acylated papain and reorients the reactive moieties resulting in acceleration of the rate of deacylation (44). It has been shown that in this series HCONp, with a side chain length of 9.7 Å, acylates most rapidly as a consequence of efficient dependence upon binding in the tosyl hole. In a similar vein it has been shown that HCONp, with a side chain length of 9.7 Å, acylates most rapidly as a consequence of efficient dependence upon binding in the tosyl hole. In a similar vein it has been shown that in this series HCONp, with a side chain length of 9.7 Å, acylates most rapidly as a consequence of efficient derivative of the data presented yields a strong argument for the existence of a transient acylimidazole intermediate in the acylation of chymotrypsin for a limited series of nonspecific ester substrates is supported by alternative explanations might be offered for individual fragments of evidence, a consistent interpretation of the preponderance of the data presented yields a strong argument for the existence of a transient acylimidazole intermediate in the acylation of chymotrypsin by phenyl benzoates.

Acknowledgment—We greatly appreciate valuable discussions with Dr. Andrew Williams.

References
11. L. W. (1957) Science 125, 1145-1146
43. G. E., and Bender, M. L. (1963) Biochemistry 2, 836-843