Advertisement

Structure/function relationship of the Chlorella glucose/H+ symporter.

      This paper is only available as a PDF. To read, Please Download here.
      The Clorella kessleri HUP 1 gene coding for a hexose/H+ symporter has been expressed in a glucose uptake-deficient mutant of Schizosaccharomyces pombe. The transformants are able to grow on glucose and to accumulate 3-O-methylglucose 100-fold. This system has been used to test the activity of specifically mutated HUP 1 cDNAs. All three histidyl residues were exchanged with arginine (H73R, H170R, and H495R) without a major effect on transport activity. When Asp-44 within the first transmembrane helix was replaced by Asn, the transporter was inactive; replacement by Glu (D44E) resulted in a loss of activity by 90% and a 15-fold increased Km value. Glutamine residues conserved in all glucose transporters sequenced so far were exchanged: Q179N (in helix 5), Q298G and Q299N (both in helix 7). Whereas Q298G only resulted in a small Km change, both Q179N and Q299N showed an increase in Km by a factor of 10. Inserting 4 additional amino acids each into the two largest loops (1 and 6) reduced the activity dramatically; only in the latter case this was due to decreased protein synthesis or stability. Two COOH-terminal deletions (-27 and -43 amino acids) were also tested. The 27 COOH-terminal amino acids, but not the 43 COOH-terminal amino acids, could be removed without affecting transporter activity.

      References

        • Sauer N.
        • Tanner W.
        FEBS Lett. 1989; 259: 43-46
        • Sauer N.
        • Caspari T.
        • Klebl F.
        • Tanner W.
        Proc. Natl Acad. Sci. U. S. A. 1990; 87: 7949-7952
        • Sauer N.
        • Friedländer K.
        • Gräml-Wicke U.
        EMBO J. 1990; 9: 3045-3050
        • Höfer M.
        • Nassar F.R.
        J. Gen. Microbiol. 1987; 133: 2163-2172
        • Mueckler M.
        • Caruso C.
        • Baldwin S.A.
        • Paniew M.
        • Blench F.
        • Morris H.R.
        • Jeffrey W.
        • Lienhard G.E.
        • Lodish H.F.
        Science. 1985; 229: 941-945
        • Silverman M.
        Annu. Rev. Biochem. 1991; 60: 757-794
        • Büchel D.E.
        • Gronnenborn B.
        • Müller-Hill B.
        Nature. 1980; 283: 541-545
        • Kaback H.R.
        Int. Rev. Cytol. 1992; 137A: 97-125
        • Hediger M.A.
        • Coady M.-J.
        • Ikeda T.S.
        • Wright E.M.
        Nature. 1987; 330: 379-381
        • Katagiri H.
        • Asano T.
        • Shibasaki Y.
        • Lin J.-L.
        • Tsukuda K.
        • Ishihara H.
        • Akanuma Y.
        • Takatin F.
        • Oka Y.
        J. Biol Chem. 1991; 266: 7769-7773
        • Garcia J.C.
        • Strube M.
        • Leingang K.
        • Keller K.
        • Mueckler M.M.
        J. Biol. Chem. 1992; 267: 7770-7776
        • Oka Y.
        • Asano T.
        • Shibasaki Y.
        • Lin J.-L.
        • Tsukuda K.
        • Katagiri H.
        • Akamuna Y.
        • Takaku F.
        Nature. 1990; 345: 550-553
        • Vieira J.
        • Messing J.
        Methods Enzymol. 1987; 153: 3-11
        • Sagers J.R.
        • Schmidt W.
        • Eckstein T.
        Nucleic Acids Res. 1988; 16: 791-802
        • Sanger F.
        • Nicklen S.
        • Coulson A.R.
        Proc. Natl. Acad. Sci. U. S. A. 1977; 74: 5463-5467
        • Peterson G.L.
        Anal Biochem. 1977; 83: 346-356
        • Burglin T.R.
        • De Robertis E.M.
        EMBO J. 1987; 6: 2617-2625
        • Stadler R.
        • Sauer N.
        Plant J. 1993; 4: 601-610
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Dunn S.D.
        Anal Biochem. 1986; 157: 144-153
        • Komor E.
        • Tanner W.
        J. Gen. Physiol. 1974; 64: 568-581
        • Tanner W.
        • Komor E.
        Gardos G. Szasz I. Biomembranes: Structure and Function. North Holland/American Elsevier, Amsterdam1975: 145-154
        • Sanders D.
        • Slayman C.
        Dainty J. DeMichelis M.I. Marrè E. Rasi-Caldogno F. Plant Membrane Transport: The Current Position. Elsevier Science Publishers B.V., Amsterdam1989: 3-11
        • Cheng Q.
        • Michels C.A.
        Genetics. 1989; 123: 477-484
        • McKenna E.
        • Hardy D.
        • Kaback H.R.
        Proc. Natl. Acad. Sci U. S. A. 1992; 89: 11954-11958
        • Consler T.G.
        • Persson B.L.
        • Jung H.
        • Zen K.H.
        • Jung K.
        • Verner E.
        • Kaback R.
        Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 6934-6938
        • Bibi E.
        • Kaback H.R.
        Proc. Natl Acad. Sci. U. S. A. 1990; 87: 4325-4329
        • Wrubel W.
        • Stochaj U.
        • Sonnewald U.
        • Theres C.
        • Ehring R.
        J. Bacterial. 1990; 172: 5374-5381
        • James D.E.
        • Strube M.
        • Mueckler M.
        Nature. 1989; 338: 83-87
        • Celenza J.L.
        • Marshall-Carlson L.
        • Carlson M.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 2130-2134
        • Schmetterer G.R.
        Plant Mol. Biol. 1990; 14: 697-706