This paper is only available as a PDF. To read, Please Download here.
Lysophosphatidic acid (LPA) is a platelet-derived phospholipid that serves as a mitogen for fibroblasts. LPA activates its own G protein-coupled receptor(s) leading to stimulation of phospholipase C and inhibition of adenylate cyclase. Furthermore, LPA rapidly activates p21ras through a pertussis toxin-sensitive pathway. In this study, we have examined LPA-induced protein tyrosine phosphorylation in Rat-1 fibroblasts. LPA action was compared with that of endothelin, which is a stronger activator of phospholipase C than LPA but fails to activate p21ras and to stimulate DNA synthesis in these cells. LPA and, more effectively, endothelin rapidly stimulate tyrosine phosphorylation of proteins of 110-130, 95, and 65-75 kDa. The effect of LPA is dose- and time-dependent, being half-maximal at 3-30 nM and peaking after 2-5 min. Among the 110-130-kDa group of phosphotyrosyl proteins is the 125-kDa “focal adhesion kinase” (p125FAK) but not the 120-kDa p21ras GTPase-activating protein. Furthermore, LPA, like epidermal growth factor, causes tyrosine phosphorylation and activation of the p42/p44 mitogen-activated protein (MAP) kinases, paralleling p21ras activation. In contrast, endothelin fails to phosphorylate MAP kinase. Treatment of the cells with pertussis toxin blocks LPA-induced MAP kinase phosphorylation without affecting the other tyrosine phosphorylations. The kinase inhibitor staurosporine (1 microM) blocks LPA-induced, but not epidermal growth factor-induced, activation of p21ras and MAP kinase, consistent with an intermediate protein kinase linking the LPA receptor to p21ras activation. The results support a model in which LPA-induced phosphorylation of MAP kinase is mediated by p21ras, and tyrosine phosphorylation of the other substrates, including p125FAK, is associated with phospholipase C activation.
REFERENCES
- Rev. Physiol. Biochem. Pharmacol. 1992; 119: 48-65
- Cell. 1989; 59: 45-54
- Biochem. J. 1992; 281: 163-169
- Cell Growth & Differ. 1993; 4: 247-255
- Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 1857-1861
- Biochem. J. 1993; 291: 677-680
- J. Biol. Chem. 1992; 267: 21360-21367
- EMBO J. 1992; 11: 2495-2501
- J. Biol. Chem. 1990; 265: 12232-12239
- Biochem. J. 1991; 280: 609-615
- Biochem. J. 1992; 285: 235-240
- Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 1259-1261
- Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 901-905
- Mol. Cell. Biol. 1990; 10: 6290-6298
- J. Biol. Chem. 1991; 266: 7746-7749
- Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 4577-4581
- J. Biol. Chem. 1991; 266: 6650-6656
- Biochem. J. 1993; 290: 27-32
- Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 5192-5196
- Biochim. Biophys. Acta. 1991; 1092: 350-357
- Cell Regul. 1991; 2: 965-978
- Cell. 1992; 68: 1-4
- Cell Growth & Differ. 1992; 3: 135-142
- Trends Biochem. Sci. 1993; 18: 128-131
- Science. 1993; 260: 315-319
- J. Biol. Chem. 1951; 193: 265-275
- Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 3328-3332
- J. Biol. Chem. 1992; 267: 13369-13375
- EMBO J. 1992; 11: 569-574
- EMBO J. 1991; 10: 1103-1109
- J. Cell. Biol. 1988; 106: 1395-1402
- Cell. 1989; 56: 5-8
- Nature. 1990; 343: 377-381
- J. Biol. Chem. 1992; 267: 8293-8298
- Mol. Cell. Biol. 1992; 12: 3903-3909
- Cell. 1992; 69: 551-558
- Nature. 1992; 358: 690-692
- J. Biol. Chem. 1992; 267: 23439-23442
- J. Cell Biol. 1992; 119: 893-903
- J. Biol. Chem. 1992; 267: 19031-19034
- Cell Regul. 1991; 2: 675-684
- Biochem. J. 1992; 287: 589-594
- Biochem. J. 1993; 289: 283-287
- Nature. 1992; 357: 602-604
- Trends Pharmacol Sci. 1989; 10: 218-220
- Biochem. Biophys. Res. Commun. 1990; 170: 1191-1196
- J. Biol. Chem. 1990; 265: 20394-20400
- Methods Enzymol. 1991; 201: 362-370
- Cell Growth & Differ. 1991; 2: 359-364
- J. Biol. Chem. 1991; 266: 16911-16916
- Cell. 1992; 70: 389-399
- Cell. 1992; 68: 1041-1050
- Cell. 1992; 68: 1031-1040
- Nature. 1991; 350: 516-518
- J. Biol. Chem. 1992; 267: 16044-16047
- Trends Biochem. Sci. 1992; 17: 502-506
Article Info
Identification
Copyright
© 1994 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) | How you can reuse
Elsevier's open access license policy

Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0)
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy