This paper is only available as a PDF. To read, Please Download here.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the “front face” of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.
REFERENCES
- Annu. Rev. Biochem. 1977; 46: 299-329
- Trends Biochem. Sci. 1983; 8: 316-320
- Biochemistry. 1977; 16: 4971-4974
- Biochim. Biophys. Acta. 1980; 592: 303-313
- J. Biol. Chem. 1978; 253: 149-159
- J. Biol. Chem. 1978; 253: 6045-6053
- Biochemistry. 1978; 17: 2479-2481
- Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 155-160
- FEBS Lett. 1978; 92: 223-226
- J. Biol. Chem. 1980; 255: 4732-4739
- J. Biol. Chem. 1978; 253: 6502-6512
- Biochim. Biophys. Acta. 1980; 626: 64-71
- Biochemistry. 1979; 18: 5422-5429
- Biochim. Biophys. Acta. 1980; 593: 290-298
- J. Biol. Chem. 1981; 256: 7394-7400
- J. Biol. Chem. 1981; 256: 4851-4855
- J. Biol. Chem. 1980; 255: 10322-10332
- J. Mol. Biol. 1976; 102: 563-569
- J. Biol. Chem. 1981; 256: 4362-4367
- J. Biol. Chem. 1985; 260: 5191-5200
- J. Biol. Chem. 1985; 260: 5184-5190
- J. Biol. Chem. 1979; 254: 5388-5396
- Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982; 298: 529-542
- J. Biochem. (Tokyo). 1979; 85: 1405-1414
- J. Biol. Chem. 1960; 235: 825-831
- Biochim. Biophys. Acta. 1982; 680: 290-296
- Biochim. Biophys. Acta. 1977; 461: 188-201
- Biochim. Biophys. Acta. 1980; 590: 50-58
- Plant Cell Physiol. 1983; 24: 11-16
- Arch. Biochem. Biophys. 1983; 222: 78-86
- FEBS Lett. 1985; 187: 155-159
- Arch. Biochem. Biophys. 1985; 236: 52-58
- Methods Biochem. Anal. 1979; 25: 273-301
- Methods Enzymol. 1971; 23: 344-363
- J. Biol. Chem. 1975; 250: 4007-4021
- Methods Enzymol. 1978; 53: 128-164
- J. Mol. Biol. 1981; 153: 1125-1149
- Biochem. J. 1981; 199: 557-564
- J. Biol. Chem. 1982; 257: 4426-4437
- J. Biol. Chem. 1981; 256: 4984-4991
Fischer, U. (1977) Doctoral thesis, University of Bonn
Article info
Publication history
Published online: January 05, 1986
Identification
Copyright
© 1986 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
User license
Creative Commons Attribution (CC BY 4.0) | How you can reuse
Elsevier's open access license policy

Creative Commons Attribution (CC BY 4.0)
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy