Advertisement

Complex formation and electron transfer between mitochondrial cytochrome c and flavocytochrome c552 from Chromatium vinosum.

Open AccessPublished:January 05, 1986DOI:https://doi.org/10.1016/S0021-9258(17)42451-3
      This paper is only available as a PDF. To read, Please Download here.
      Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the “front face” of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.

      REFERENCES

        • Salemme R.
        Annu. Rev. Biochem. 1977; 46: 299-329
        • Margoliash E.
        • Bosshard H.R.
        Trends Biochem. Sci. 1983; 8: 316-320
        • Smith H.T.
        • Staudenmayer N.
        • Millett F.
        Biochemistry. 1977; 16: 4971-4974
        • Smith M.B.
        • Stonehuerner J.
        • Ahmed A.J.
        • Staudenmayer N.
        • Millett F.
        Biochim. Biophys. Acta. 1980; 592: 303-313
        • Ferguson-Miller S.
        • Brautigan D.L.
        • Margoliash E.
        J. Biol. Chem. 1978; 253: 149-159
        • Rieder R.
        • Bosshard H.R.
        J. Biol. Chem. 1978; 253: 6045-6053
        • Ahmed A.J.
        • Smith H.T.
        • Smith M.B.
        • Millett F.
        Biochemistry. 1978; 17: 2479-2481
        • Speck S.H.
        • Ferguson-Miller S.
        • Osheroff N.
        • Margoliash E.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 155-160
        • Rieder R.
        • Bosshard H.R.
        FEBS Lett. 1978; 92: 223-226
        • Rieder R.
        • Bosshard H.R.
        J. Biol. Chem. 1980; 255: 4732-4739
        • Kang C.H.
        • Brautigan D.L.
        • Osheroff N.
        • Margoliash E.
        J. Biol. Chem. 1978; 253: 6502-6512
        • Smith M.B.
        • Millett F.
        Biochim. Biophys. Acta. 1980; 626: 64-71
        • Stonehuerner J.
        • Williams J.B.
        • Millett F.
        Biochemistry. 1979; 18: 5422-5429
        • Webb M.
        • Stonehuerner J.
        • Millett F.
        Biochim. Biophys. Acta. 1980; 593: 290-298
        • Speck S.H.
        • Koppenol W.H.
        • Dethmers J.K.
        • Osheroff N.
        • Margoliash E.
        • Rajagopalan K.V.
        J. Biol. Chem. 1981; 256: 7394-7400
        • Geren L.M.
        • Millett F.
        J. Biol. Chem. 1981; 256: 4851-4855
        • Poulos T.L.
        • Kraut J.
        J. Biol. Chem. 1980; 255: 10322-10332
        • Salemme F.R.
        J. Mol. Biol. 1976; 102: 563-569
        • Bisson R.
        • Capaldi R.A.
        J. Biol. Chem. 1981; 256: 4362-4367
        • Bechtold R.
        • Bosshard H.R.
        J. Biol. Chem. 1985; 260: 5191-5200
        • Waldmeyer B.
        • Bosshard H.R.
        J. Biol. Chem. 1985; 260: 5184-5190
        • Dailey H.A.
        • Strittmatter P.
        J. Biol. Chem. 1979; 254: 5388-5396
        • Trüper H.C.
        • Fischer U.
        Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982; 298: 529-542
        • Fukumori Y.
        • Yamanaka T.
        J. Biochem. (Tokyo). 1979; 85: 1405-1414
        • Bartsch R.G.
        • Kamen M.D.
        J. Biol. Chem. 1960; 235: 825-831
        • Gray G.O.
        • Knaff D.B.
        Biochim. Biophys. Acta. 1982; 680: 290-296
        • Van Grondelle R.
        • Duysens L.N.M.
        • Van der Wel J.A.
        • Van der Wal H.N.
        Biochim. Biophys. Acta. 1977; 461: 188-201
        • Knaff D.B.
        • Whetstone R.
        • Carr J.W.
        Biochim. Biophys. Acta. 1980; 590: 50-58
        • Tomiyama Y.
        • Boi M.
        • Takamiya K.
        • Nishimura M.
        Plant Cell Physiol. 1983; 24: 11-16
        • Gray G.O.
        • Gaul D.F.
        • Knaff D.B.
        Arch. Biochem. Biophys. 1983; 222: 78-86
        • Davidson M.W.
        • Gray G.O.
        • Knaff D.B.
        FEBS Lett. 1985; 187: 155-159
        • Meyer T.C.
        • Vorkink W.P.
        • Tollin G.
        • Cusanovich M.D.
        Arch. Biochem. Biophys. 1985; 236: 52-58
        • Bosshard H.R.
        Methods Biochem. Anal. 1979; 25: 273-301
        • Bartsch R.G.
        Methods Enzymol. 1971; 23: 344-363
        • O'Farrell P.H.
        J. Biol. Chem. 1975; 250: 4007-4021
        • Brautigan D.L.
        • Ferguson-Miller S.
        • Margoliash E.
        Methods Enzymol. 1978; 53: 128-164
        • Bosshard H.R.
        J. Mol. Biol. 1981; 153: 1125-1149
        • Chang J.Y.
        Biochem. J. 1981; 199: 557-564
        • Koppenol W.H.
        • Margoliash E.
        J. Biol. Chem. 1982; 257: 4426-4437
        • Smith H.T.
        • Ahmed A.J.
        • Millett F.
        J. Biol. Chem. 1981; 256: 4984-4991
      1. Fischer, U. (1977) Doctoral thesis, University of Bonn