Introduction
Results
Cysteine-modifying reagents mimic the effect of redox modulation of Cav3.2 by substance P

Ambient zinc and a high-affinity zinc-binding site are necessary for Cav3 channel sensitivity to MTSES


The cysteines in the IS1–IS2 extracellular loop of T-type Ca2+ channels are necessary and sufficient for redox-mediated inhibition of channel activity



Discussion
Experimental procedures
Cell culture, transfections, cDNA constructs, and chemicals
Electrophysiology
Homology modeling
Statistics
Data availability
Author contributions
Supplementary Material
References
- Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones.J. Physiol. 1987; 394 (2451016): 149-172
- Three types of neuronal calcium channel with different calcium agonist sensitivity.Nature. 1985; 316 (2410796): 440-443
- The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential.Pharmacol. Rev. 2015; 67 (26362469): 821-870
- Genetic T-type calcium channelopathies.J. Med. Genet. 2020; 57 (31217264): 1-10
- Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons.J. Neurosci. 2010; 30 (21084598): 15419-15429
- Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects.J. Neurosci. 1994; 14 (8083749): 5485-5502
- Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode.J. Neurosci. 1999; 19 (9880580): 599-609
- Targeting voltage-gated calcium channels in neurological and psychiatric diseases.Nat. Rev. Drug Discov. 2016; 15 (26542451): 19-34
- The role of peripheral T-type calcium channels in pain transmission.Cell Calcium. 2006; 40 (16777222): 197-203
- Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse.Neuroscience. 2013; 250 (23867767): 263-274
- Redox-dependent modulation of T-type Ca2+ channels in sensory neurons contributes to acute anti-nociceptive effect of substance P.Antioxid. Redox Signal. 2016; 25 (27306612): 233-251
- The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity.Neuron. 2014; 83 (25189210): 1144-1158
- The low-threshold calcium channel Cav3.2 determines low-threshold mechanoreceptor function.Cell Rep. 2015; 10 (25600872): 370-382
- In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy.Pain. 2009; 145 (19577366): 184-195
- Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception.EMBO J. 2005; 24 (15616581): 315-324
- Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons.J. Neurosci. 2007; 27 (17376991): 3305-3316
- Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve.J. Neurophysiol. 2008; 99 (18417624): 3151-3156
- T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21690417): 11268-11273
- Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels.Biochem. Biophys. Res. Commun. 2016; 473 (26944020): 396-402
- Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26483470): 13705-13710
- Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation.Pflugers Arch. 2013; 465 (23503728): 1159-1170
- Reversal of neuropathic pain in diabetes by targeting glycosylation of CaV3.2 T-type calcium channels.Diabetes. 2013; 62 (23835327): 3828-3838
- Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels.J. Biol. Chem. 2010; 285 (19940152): 3271-3281
- Regulation of the T-type Ca channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H S in nociception.J. Physiol. 2016; 594 (26804000): 4119-4129
- Subunit-specific modulation of T-type calcium channels by zinc.J. Physiol. 2007; 578 (17082234): 159-171
- A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels.J. Biol. Chem. 2006; 281 (16377633): 4823-4830
- The endogenous redox agent l-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors.J. Neurosci. 2005; 25 (16177046): 8766-8775
- Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate.J. Neurosci. 2007; 27 (18003836): 12577-12583
- Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels.J. Neurosci. 2007; 27 (17670971): 8250-8260
- Redox modulation of T-type calcium channels in rat peripheral nociceptors.Neuron. 2001; 31 (11498052): 75-85
- Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22586118): E1578-E1586
- Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability.J. Physiol. 2016; 594 (26931411): 3561-3574
- Intracellular signaling pathway of substance P-induced superoxide production in human neutrophils.Eur. J. Pharmacol. 1996; 299 (8901022): 187-195
- Substance P mediates AP-1 induction in A549 cells via reactive oxygen species.Regul. Pept. 2005; 124 (15544846): 99-103
- Cryo-EM structures of apo and antagonist-bound human Cav3.1.Nature. 2019; 576 (31766050): 492-497
- Protein oxidation in aging and age-related diseases.Ann. N.Y. Acad. Sci. 2001; 928 (11795513): 22-38
- Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway.J. Neurosci. 2009; 29 (19641113): 9500-9509
- Redox mechanism of S-nitrosothiol modulation of neuronal CaV3.2 T-type calcium channels.Mol. Neurobiol. 2013; 48 (23813099): 274-280
- Redox and nitric oxide-mediated regulation of sensory neuron ion channel function.Antioxid. Redox Signal. 2015; 22 (24735331): 486-504
- The relationship between zinc intake and serum/plasma zinc concentration in children: a systematic review and dose-response meta-analysis.Nutrients. 2012; 4 (23016120): 841-858
- Neurokinin-1 receptor activation induces reactive oxygen species and epithelial damage in allergic airway inflammation.Clin. Exp. Allergy. 2007; 37 (17941913): 1788-1797
- TRPC channel activation by extracellular thioredoxin.Nature. 2008; 451 (18172497): 69-72
- Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin.FASEB J. 2013; 27 (23671274): 3395-3407
- Thiol-based regulatory switches.Annu. Rev. Genet. 2003; 37 (14616057): 91-121
- Free radical signalling underlies inhibition of CaV3.2 T-type calcium channels by nitrous oxide in the pain pathway.J. Physiol. 2011; 589 (21059758): 135-148
- Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels.FASEB J. 2014; 28 (25183670): 5376-5387
- GABAB receptors inhibit low-voltage activated and high-voltage activated Ca2+ channels in sensory neurons via distinct mechanisms.Biochem. Biophys. Res. Commun. 2015; 465 (26239659): 188-193
- SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res. 2018; 46 (29788355): W296-W303
- Toward the estimation of the absolute quality of individual protein structure models.Bioinformatics. 2011; 27 (21134891): 343-350
Article info
Publication history
Footnotes
This work was supported by Biotechnology and Biological Sciences Research Council Grants BB/R003068/1 and BB/R02104X/1 (to N. G.), the 100 Foreign Experts of Hebei Province Award (to N. G.), National Natural Science Foundation of China Grants 81701113 (to D. H.) and 81871075 and 91732108 (to H. Z.), and Excellent Youth Fund of Natural Science Foundation of Hebei Grant C2018206222 and Hebei Province Department of Education Grant BJ2017004 (to D. H.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Fig. S1 and Tables S1 and S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy