Introduction
- Felszeghy S.
- Viiri J.
- Paterno J.J.
- Hyttinen J.M.T.
- Koskela A.
- Chen M.
- Leinonen H.
- Tanila H.
- Kivinen N.
- Koistinen A.
- Toropainen E.
- Amadio M.
- Smedowski A.
- Reinisalo M.
- Winiarczyk M.
- et al.
- Du J.
- Cleghorn W.M.
- Contreras L.
- Lindsay K.
- Rountree A.M.
- Chertov A.O.
- Turner S.J.
- Sahaboglu A.
- Linton J.
- Sadilek M.
- Satrústegui J.
- Sweet I.R.
- Paquet-Durand F.
- Hurley J.B.
- Gray L.R.
- Sultana M.R.
- Rauckhorst A.J.
- Oonthonpan L.
- Tompkins S.C.
- Sharma A.
- Fu X.
- Miao R.
- Pewa A.D.
- Brown K.S.
- Lane E.E.
- Dohlman A.
- Zepeda-Orozco D.
- Xie J.
- Rutter J.
- et al.
Results
Impact of ammonium on retinal metabolism
- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.

Tissue-specific nitrogen metabolism in retina, RPE/choroid, liver, and brain in vivo

The fate of [15N]glutamine in retina and RPE/choroid

The fate of[15N]aspartate in retina and RPE/choroid

The fate of [15N]leucine in retina and RPE/choroid

The fate of [15N]alanine in retina and RPE/choroid

The nitrogen sources for the increased aspartate by the inhibition of mitochondrial pyruvate metabolism
- Du J.
- Cleghorn W.M.
- Contreras L.
- Lindsay K.
- Rountree A.M.
- Chertov A.O.
- Turner S.J.
- Sahaboglu A.
- Linton J.
- Sadilek M.
- Satrústegui J.
- Sweet I.R.
- Paquet-Durand F.
- Hurley J.B.
- Du J.
- Cleghorn W.M.
- Contreras L.
- Lindsay K.
- Rountree A.M.
- Chertov A.O.
- Turner S.J.
- Sahaboglu A.
- Linton J.
- Sadilek M.
- Satrústegui J.
- Sweet I.R.
- Paquet-Durand F.
- Hurley J.B.

The fate of [13C]alanine in retina and RPE/choroid with or without inhibition of MPC

Discussion
Tissue-specific ammonia metabolism
- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.

- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.
Retina relies on aspartate transaminase in de novo synthesis of glutamate and glutamate-derived amino acids
Nitrogen donors for aspartate in retina versus RPE when MPC is inhibited
- Du J.
- Cleghorn W.M.
- Contreras L.
- Lindsay K.
- Rountree A.M.
- Chertov A.O.
- Turner S.J.
- Sahaboglu A.
- Linton J.
- Sadilek M.
- Satrústegui J.
- Sweet I.R.
- Paquet-Durand F.
- Hurley J.B.
- Du J.
- Cleghorn W.M.
- Contreras L.
- Lindsay K.
- Rountree A.M.
- Chertov A.O.
- Turner S.J.
- Sahaboglu A.
- Linton J.
- Sadilek M.
- Satrústegui J.
- Sweet I.R.
- Paquet-Durand F.
- Hurley J.B.
- Tompkins S.C.
- Sheldon R.D.
- Rauckhorst A.J.
- Noterman M.F.
- Solst S.R.
- Buchanan J.L.
- Mapuskar K.A.
- Pewa A.D.
- Gray L.R.
- Oonthonpan L.
- Sharma A.
- Scerbo D.A.
- Dupuy A.J.
- Spitz D.R.
- Taylor E.B.
Nitrogen metabolism in the metabolic communication between retina and RPE
- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.
- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.
- Kanow M.A.
- Giarmarco M.M.
- Jankowski C.S.
- Tsantilas K.
- Engel A.L.
- Du J.
- Linton J.D.
- Farnsworth C.C.
- Sloat S.R.
- Rountree A.
- Sweet I.R.
- Lindsay K.J.
- Parker E.D.
- Brockerhoff S.E.
- Sadilek M.
- et al.
Experimental procedures
Reagents
Animals
Retina and RPE/choroid explant culture
Metabolite extraction
Metabolite analysis with GC-MS
Statistics
Author contributions
Supplementary Material
References
- Glucose, lactate, and shuttling of metabolites in vertebrate retinas.J. Neurosci. Res. 2015; 93 (25801286): 1079-1092
- ATP consumption by mammalian rod photoreceptors in darkness and in light.Curr. Biol. 2008; 18 (19084410): 1917-1921
- Glycolytic reliance promotes anabolism in photoreceptors.eLife. 2017; 6 (28598329): e25946
- Proline mediates metabolic communication between retinal pigment epithelial cells and the retina.J. Biol. Chem. 2019; 294 (31110046): 10278-10289
- Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27911769): 14710-14715
- The retinal pigment epithelium utilizes fatty acids for ketogenesis.J. Biol. Chem. 2014; 289 (24898254): 20570-20582
- Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration.Nat. Genet. 2012; 44 (22842230): 1035-1039
- Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle.Nat. Genet. 2008; 40 (18806796): 1230-1234
- Perspective on AMD pathobiology: a bioenergetic crisis in the RPE.Invest. Ophthalmol. Vis. Sci. 2018; 59 (30025108): AMD41-AMD47
- Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration.Redox Biol. 2019; 20 (30253279): 1-12
- Genome-wide analyses identify common variants associated with macular telangiectasia type 2.Nat. Genet. 2017; 49 (28250457): 559-567
- Abnormal mTORC1 signaling leads to retinal pigment epithelium degeneration.Theranostics. 2019; 9 (30867823): 1170-1180
- mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice.J. Clin. Invest. 2011; 121 (21135502): 369-383
- Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa.Hum. Mol. Genet. 2016; 25 (27516389): 4244-4255
- Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice.J. Clin. Invest. 2015; 125 (25798619): 1446-1458
- Ammonium metabolism in humans.Metab. Clin. Exp. 2012; 61 (22921946): 1495-1511
- Ammonia metabolism and hyperammonemic disorders.Adv. Clin. Chem. 2014; 67 (25735860): 73-150
- Microbial ureases: significance, regulation, and molecular characterization.Microbiol. Rev. 1989; 53 (2651866): 85-108
- Ammonia toxicity: from head to toe?.Metab. Brain Dis. 2017; 32 (28012068): 529-538
- Hyperammonemia in review: pathophysiology, diagnosis, and treatment.Pediatr. Nephrol. 2012; 27 (21431427): 207-222
- Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.Science. 2017; 358 (29025995): 941-946
- Asparagine synthetase: function, structure, and role in disease.J. Biol. Chem. 2017; 292 (29084849): 19952-19958
- Recovery from hepatic retinopathy after liver transplantation.Graefes Arch. Clin. Exp. Ophthalmol. 2003; 241 (12734706): 451-457
- Muller (glial) cell development in vivo and in retinal explant cultures: morphology and electrophysiology, and the effects of elevated ammonia.J. Hirnforsch. 1998; 39 (10022343): 193-206
- Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling.Prog. Neurobiol. 2001; 64 (11240211): 157-183
- Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.J. Physiol. 1996; 495 (8887745): 305-318
- Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina.J. Neurosci. Res. 2001; 66 (11746419): 914-922
- Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina.J. Biol. Chem. 2013; 288 (24187136): 36129-36140
- Loss of MPC1 reprograms retinal metabolism to impair visual function.Proc. Natl. Acad. Sci. U.S.A. 2019; 116 (30808746): 3530-3535
- Requirement for the mitochondrial pyruvate carrier in mammalian development revealed by a hypomorphic allelic series.Mol. Cell. Biol. 2016; 36 (27215380): 2089-2104
- Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate–alanine cycling.Cell Metab. 2015; 22 (26344101): 682-694
- Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis.Cell Metab. 2015; 22 (26344103): 669-681
- Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25313047): 15579-15584
- Cytosolic reducing power preserves glutamate in retina.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (24127593): 18501-18506
- Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye.eLife. 2017; 6 (28901286): 1-25
- Pivotal role of glutamine synthetase in ammonia detoxification.Hepatology. 2017; 65 (27641632): 281-293
- The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases.Metab. Brain Dis. 2013; 28 (23420347): 127-131
- Nitrogen shuttling between neurons and glial cells during glutamate synthesis.J. Neurochem. 2001; 76 (11259489): 1712-1723
- Glutamate metabolic pathways and retinal function.J. Neurochem. 2009; 111 (19702659): 589-599
- Mechanism-based inhibition of the Mycobacterium tuberculosis branched-chain aminotransferase by d- and l-cycloserine.ACS Chem. Biol. 2017; 12 (28272868): 1235-1244
- Pyruvate decarboxylating action of l-cycloserine: the significance of this in understanding its metabolic inhibitory action.J. Biol. Chem. 1986; 261 (3771514): 13969-13972
- Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia.J. Neurochem. 2007; 101 (17394462): 120-131
- De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate–glutamate carrier aralar/AGC1.Front. Endocrinol. 2013; 4 (24133485): 149
- Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.Mol. Cell. 2014; 56 (25458842): 414-424
- Regulation of substrate utilization by the mitochondrial pyruvate carrier.Mol. Cell. 2014; 56 (25458843): 425-435
- Disrupting mitochondrial pyruvate uptake directs glutamine into the TCA cycle away from glutathione synthesis and impairs hepatocellular tumorigenesis.Cell Reports. 2019; 28 (31484072): 2608-2619.e6
- Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion.Cell Reports. 2014; 7 (24910426): 2042-2053
- Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.Redox Biol. 2019; 24 (31039480): 101201
- IsoCor: correcting MS data in isotope labeling experiments.Bioinformatics. 2012; 28 (22419781): 1294-1296
- Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side.J. Biol. Chem. 2017; 292 (28615447): 12895-12905
- Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans.Am. J. Physiol. 1990; 259 (2240206): E677-E684
- Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa.Nat. Neurosci. 2009; 12 (19060896): 44-52
- Serine and 1-carbon metabolism are required for HIF-mediated protection against retinopathy of prematurity.JCI insight. 2019; 4 (31341109): 129398
- Protein turnover in retina.J. Neurochem. 1980; 35 (7452249): 131-142
- The renewal of photoreceptor cell outer segments.J. Cell Biol. 1967; 33 (6033942): 61-72
- Synthesis and breakdown of different sized retinal proteins in darkness and during photic stimulation.Neurochem. Int. 1980; 1C (20487750): 393-403
- Protein synthesis in central nervous tissue: studies on retina in vitro.J. Neurochem. 1976; 27 (12170628): 987-997
- Impact of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid.Exp. Eye Res. 2018; 174 (29864440): 113-120
- Probing metabolism in the intact retina using stable isotope tracers.Methods Enzymol. 2015; 561 (26358904): 149-170
- IsoCor: isotope correction for high-resolution MS labeling experiments.Bioinformatics. 2019; 35 (30903185): 4484-4487
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant EY026030 (to J. D.) and by the Retina Research Foundation (to J. D.). This work was also supported in part by a Yanzhou University International Academic Exchange Fund Studentship (to R. X.), the Yangzhou University International Academic Exchange Fund Grant XKYCX18_130 (to R. X.), and a West Virginia University Summer Undergraduate Vision Research Fellowship (to B. K. R.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1–S4 and Figs. S1–S5.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy