Introduction
- Schmidt A.
- Sauthof L.
- Szczepek M.
- Fernandez Lopez M.F.
- Velazquez-Escobar F.V.
- Qureshi B.M.
- Michael N.
- Buhrke D.
- Stevens T.
- Kwiatkowski D.
- von Stetten D.
- Mroginski M.-A.
- Krauss N.
- Lamparter T.
- Hildebrandt P.
- Scheerer P.
- Schmidt A.
- Sauthof L.
- Szczepek M.
- Fernandez Lopez M.F.
- Velazquez-Escobar F.V.
- Qureshi B.M.
- Michael N.
- Buhrke D.
- Stevens T.
- Kwiatkowski D.
- von Stetten D.
- Mroginski M.-A.
- Krauss N.
- Lamparter T.
- Hildebrandt P.
- Scheerer P.
- Salewski J.
- Escobar F.V.
- Kaminski S.
- von Stetten D.
- Keidel A.
- Rippers Y.
- Michael N.
- Scheerer P.
- Piwowarski P.
- Bartl F.
- Frankenberg-Dinkel N.
- Ringsdorf S.
- Gärtner W.
- Lamparter T.
- Mroginski M.A.
- Hildebrandt P.
Results
The Illuminated PAS–GAF core forms symmetric homodimers

Crystal structures of the IsPadCPG monomerZ and the IsPadCPG dimerE/E reveal structural elements involved in stabilization of the Pfr-like state


RR spectroscopic analysis of IsPadC and variants

Protein | Conditions/temperature | Quaternary structure | LXPXRSF conformation | Secondary structure (PHY-tongue) | Cysteine linkage to chromophore ( 53 ) | Chromophore configuration | State nomenclature |
---|---|---|---|---|---|---|---|
Agp1 | Dark/20 °C | Dimer | Elongated | β-Hairpin/sheet | β-Side | ZZZssa | Pr |
Light/−25 °C | Dimer | N.E.E. | β-Hairpin/sheet | α-Side | ZZEssa, deprotonated | Meta-Rc | |
Light/20 °C | Dimer | α-Helix | Disordered/α-helix | α-Side (N.E.E.) | ZZEssa, protonated | Pfr | |
IsPadC PG | Dark/20 °C | Mixture mono/dimer | β-Side | ZZZssa | Pr | ||
Light/−25 °C | Mixture mono/dimer | N.E.E. | α-Side | ZZEssa, protonated | Pfr-like | ||
Light/20 °C | Mixture mono/dimer | LXPXRSF mimic contact | α-Side | ZZEssa, protonated | Pfr-like | ||
IsPadC | Dark/20 °C | Dimer | Elongated | β-Hairpin/sheet | β-Side | ZZZssa | Pr |
Light/−25 °C | Dimer | N.E.E. | β-Hairpin/sheet | α-Side | ZZEssa, protonated | Pfr-like | |
Light/20 °C | Dimer | α-Helix or unstructured | Disordered/mixed α-helix and unstructured tongue heterodimers | α-Side | ZZEssa, protonated | Pfr-like/Pfr |
RR spectroscopic results: photoactivation experiments at different temperatures
- Salewski J.
- Escobar F.V.
- Kaminski S.
- von Stetten D.
- Keidel A.
- Rippers Y.
- Michael N.
- Scheerer P.
- Piwowarski P.
- Bartl F.
- Frankenberg-Dinkel N.
- Ringsdorf S.
- Gärtner W.
- Lamparter T.
- Mroginski M.A.
- Hildebrandt P.
- Salewski J.
- Escobar F.V.
- Kaminski S.
- von Stetten D.
- Keidel A.
- Rippers Y.
- Michael N.
- Scheerer P.
- Piwowarski P.
- Bartl F.
- Frankenberg-Dinkel N.
- Ringsdorf S.
- Gärtner W.
- Lamparter T.
- Mroginski M.A.
- Hildebrandt P.
IR-difference analysis of IsPadC


Discussion
Tongue refolding is preceded by structural rearrangements in the NTS
- Schmidt A.
- Sauthof L.
- Szczepek M.
- Fernandez Lopez M.F.
- Velazquez-Escobar F.V.
- Qureshi B.M.
- Michael N.
- Buhrke D.
- Stevens T.
- Kwiatkowski D.
- von Stetten D.
- Mroginski M.-A.
- Krauss N.
- Lamparter T.
- Hildebrandt P.
- Scheerer P.
Chromophore structural changes
Coupling of chromophore and protein structural changes
Impact of the quaternary structure on the chromophore conformation
- Salewski J.
- Escobar F.V.
- Kaminski S.
- von Stetten D.
- Keidel A.
- Rippers Y.
- Michael N.
- Scheerer P.
- Piwowarski P.
- Bartl F.
- Frankenberg-Dinkel N.
- Ringsdorf S.
- Gärtner W.
- Lamparter T.
- Mroginski M.A.
- Hildebrandt P.
Summary and implications
Experimental procedures
Protein expression and purification
Protein crystallization
UV-visible characterization
IR difference spectroscopy
RR spectroscopy
Author contributions
Acknowledgments
Supplementary Material
References
- Bacteriophytochromes–from informative model systems of phytochrome function to powerful tools in cell biology.Curr. Opin. Struct. Biol. 2019; 57 (30878713): 72-83
- Engineered photoreceptors as novel optogenetic tools.Photochem. Photobiol. Sci. 2010; 9 (20835487): 1286-1300
- Design and signaling mechanism of light-regulated histidine kinases.J. Mol. Biol. 2009; 385 (19109976): 1433-1444
- Engineering of a red-light–activated human cAMP/cGMP-specific phosphodiesterase.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24889611): 8803-8808
- Signal amplification and transduction in phytochrome photosensors.Nature. 2014; 509 (24776794): 245-248
- Structural snapshot of a bacterial phytochrome in its functional intermediate state.Nat. Commun. 2018; 9 (30464203): 4912
- Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes.J. Biol. Chem. 2019; 294 (30683693): 4498-4510
- Long-range allosteric signaling in red light–regulated diguanylyl cyclases.Sci. Adv. 2017; 3 (28275738): e1602498
- Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor.Elife. 2018; 7 (29869984): e34815
- Fourier transform resonance Raman spectroscopy of phytochrome.Biochemistry. 1992; 31 (1510982): 7957-7962
- Resonance Raman analysis of the Pr and Pfr forms of phytochrome.Biochemistry. 1990; 29 (2271702): 11141-11146
- Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions.Biochemistry. 1996; 35 (8718870): 10793-10799
- FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations.Biophys. J. 2008; 95 (18390618): 1256-1267
- Assignments of the Pfr–Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore.J. Phys. Chem. B. 2005; 109 (16853666): 20597-20604
- Homogeneity of phytochrome Cph1 vibronic absorption revealed by resonance Raman intensity analysis.J. Am. Chem. Soc. 2009; 131 (19739629): 13946-13948
- Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy.ChemPhysChem. 2010; 11 (20333618): 1207-1214
- Chromophore heterogeneity and photoconversion in phytochrome crystals and solution studied by resonance Raman spectroscopy.Angew. Chem. Int. Ed. Engl. 2008; 47 (18484576): 4753-4755
- A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes.Nat. Chem. 2015; 7 (25901821): 423-430
- Structural and vibrational characterization of the chromophore binding site of bacterial phytochrome Agp1.Photochem. Photobiol. 2017; 93 (28500721): 713-723
- Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.J. Biol. Chem. 2013; 288 (23603902): 16800-16814
- The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful.Curr. Opin. Struct. Biol. 2015; 35 (26241319): 7-16
- The photoconversion of phytochrome includes an unproductive shunt reaction pathway.Chemphyschem. 2018; 19 (29327408): 566-570
- The crystal structures of the N-terminal photosensory core module of Agrobacterium phytochrome Agp1 as parallel and anti-parallel dimers.J. Biol. Chem. 2016; 291 (27466363): 20674-20691
- Resonance Raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome.Biochemistry. 1996; 35 (8973170): 15997-16008
- Protonation state and structural changes of the tetrapyrrole chromophore during the P(r) → P(fr) phototransformation of phytochrome: a resonance raman spectroscopic study.Biochemistry. 1999; 38 (10563801): 15185-15192
- Absorption spectra of phytochrome intermediates.Zeitschrift fur Naturforsch. C. 1985; 40: 109-114
- Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore.J. Biol. Chem. 2005; 280 (16061486): 34358-34364
- Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation.J. Biol. Chem. 2007; 282 (17121858): 2116-2123
- FTIR spectroscopy revealing light-dependent refolding of the conserved tongue region of bacteriophytochrome.J. Phys. Chem. Lett. 2014; 5 (25126387): 2512-2515
- Light-induced structural changes in a monomeric bacteriophytochrome.Struct. Dyn. 2016; 3 (054701) (27679804)
- FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: consequences for its protonation states, conformation, and protein interaction.Biochemistry. 2001; 40 (11732915): 14952-14959
- Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes.J. Biol. Chem. 2008; 283 (18192276): 12212-12226
- Investigation of the Chromophore Structure in Plant and Bacterial Phytochromes by Comparison of Experimental and Calculated Raman Spectra. Technische Universität, Berlin2008 (Ph.D. thesis)
- Vibrational Spectroscopy of Phytochromes and Phytochrome-related Photoreceptors. Technische Universität, Berlin2015 (Ph.D. thesis)
- Common structural elements in the chromophore binding pocket of the Pfr state of bathy phytochromes.Photochem. Photobiol. 2017; 93 (28500706): 724-732
- Heterogeneous photodynamics of the Pfr state in the cyanobacterial phytochrome Cph1.Biochemistry. 2014; 53 (24940993): 4601-4611
- Protonation-dependent structural heterogeneity in the chromophore binding site of cyanobacterial phytochrome cph1.J. Phys. Chem. B. 2017; 121 (27966353): 47-57
- Dynamic intracomplex heterogeneity of phytochrome.J. Am. Chem. Soc. 2009; 131 (19128172): 69-71
- Influence of heterogeneity on the ultrafast photoisomerization dynamics of Pfr in Cph1 phytochrome.Photochem. Photobiol. 2017; 93 (28500700): 703-712
- Protonation heterogeneity modulates the ultrafast photocycle initiation dynamics of phytochrome Cph1 protonation heterogeneity modulates the ultrafast photocycle initiation dynamics of phytochrome Cph1.J. Phys. Chem. Lett. 2018; 9 (29874080): 3454-3462
- Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (29632180): 4387-4392
- On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome.J. Biol. Chem. 2018; 293 (29622676): 8161-8172
- Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion.Structure. 2016; 24 (26853942): 448-457
- Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration.Elife. 2019; 8 (30964001): e43959
- Allosteric control of an asymmetric transduction in a g protein-coupled receptor heterodimer.Elife. 2017; 6 (28829739): e26985
- Allosteric activation of functionally asymmetric RAF kinase dimers.Cell. 2013; 154 (23993095): 1036-1046
- Activation of PKA via asymmetric allosteric coupling of structurally conserved cyclic nucleotide binding domains.Nat. Commun. 2019; 10 (31484930): 3984
- An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol.BMC Biotechnol. 2008; 8 (19055817): 91
- Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12186972): 11628-11633
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Preparation and properties of chromopeptides from the Pfr form of phytochrome.Zeitschrift fur Naturforsch.- Sect. C J. Biosci. 1981; 36: 440-449
- Distinct classes of red/far-red photochemistry within the phytochrome superfamily.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19339496): 6123-6137
Article info
Publication history
Footnotes
This work was supported by Project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 and parts of this work were supported by the Austrian Science Fund through the Ph.D. Program “DK Molecular Enzymology” (to G. G.) and by the Austrian Science Fund (FWF) P32022 (to A. W.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S4 and Tables S1 and S2.
The atomic coordinates and structure factors (codes 6SAW and 6SAX) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy