Results
G. lovleyi NrfA was heterologously overexpressed in S. oneidensis
Dynamic light scattering indicated that G. lovleyi NrfA remains a monomer in solution
Concentration (µm) | RH (nm) | Polydispersity index (%) |
---|---|---|
24 | 3.4 | 11.9 |
52 | 3.6 | 10.9 |
105 | 3.4 | 11.9 |
165 | 3.4 | 11.9 |
175 | 3.4 | 12.5 |
266 | 3.3 | 13.6 |
327 | 3.1 | 4.3 |
The crystal structure of G. lovleyi NrfA revealed key structural differences
Parameter | Value(s) for G. lovleyi NrfA-1 |
---|---|
Data collection | |
Beamline | LS-CAT (21-ID-D) |
Wavelength (Å) | 1.72 |
Space group | P212121 |
Unit cell | |
a, b, c (Å) | 110.9 144.6 234.9 |
α, β, γ (∘) | 90.0, 90.0, 90.0 |
Resolution (Å) | 29.36–2.55 (2.64–2.55) |
Redundancy | 5.5 (5.3) |
Completeness (%) | 98.9 (98.8) |
I/σI | 4.8 (1.8) |
Rmerge, | 0.20 (1.66) |
Rpim, | 0.11 (0.77) |
CC1/2 | 0.36 |
Refinement | |
No. of unique reflections | 122,238 |
No. of atoms | 23,376 |
Protein (n) | 21,161 |
Heme (n) | 1290 |
Sulfate (n) | 30 |
Rwork/Rfree | 0.19/0.24 |
Wilson B-factor (Å2) | 34.2 |
B-factor (Å2) | |
Protein | 39.7 |
Heme | 31.6 |
Sulfate | 35.7 |
Solvent | 33.9 |
RMSD | |
Bond length (Å) | 0.010 |
Bond angle (∘) | 1.21 |
Ramachandran plot (%) | |
Favored | 96.0 |
Allowed | 3.5 |
Outliers | 0.5 |



G. lovleyi NrfA displayed a kinetic behavior similar to that of previously characterized homologs

Phylogenetic analysis revealed a diverse evolutionary path of Arg-containing NrfA proteins

Discussion
Experimental procedures
Protein expression and purification
Extinction coefficient
ICP-OES
DLS
Crystal structure determination
Activity assay
Phylogenetic analysis
Data availability
Acknowledgments
Supplementary Material
References
- Reversing nitrogen fixation.Nat. Rev. Chem. 2018; 2: 278-289
- Ecology of denitrification and dissimilatory nitrate reduction to ammonium.in: Zehnder A.J.B. Environmental Microbiology of Anaerobes. John Wiley and Sons, New York1988: 179-244
- Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.Sci. Rep. 2012; 2: 1-5
- Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem.Soil Biol. Biochem. 2007; 39: 2448-2458
- Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil.Soil Biol. Biochem. 2018; 123: 97-104
- Enzymology and bioenergetics of respiratory nitrite ammonification.FEMS Microbiol. Rev. 2002; 26 (12165429): 285-309
- Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase.J. Am. Chem. Soc. 2002; 124 (12296741): 11737-11745
- Structure of cytochrome c nitrite reductase.Nature. 1999; 400 (10440380): 476-480
- Cytochrome c nitrite reductase from Wolinella succinogenes: structure at 1.6 Å resolution, inhibitor binding, and heme-packing motifs.J. Biol. Chem. 2000; 275 (10984487): 39608-39616
- Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli.Biochemistry. 2002; 41 (11863430): 2921-2931
- Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system.J. Biol. Inorg. Chem. 2012; 17 (22382353): 647-662
- X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination.EMBO J. 2006; 25 (17139260): 5951-5960
- Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA).J. Biol. Chem. 2003; 278 (12618432): 17455-17465
- Six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase: insights from density functional theory studies.Inorg. Chem. 2015; 54 (26237518): 9303-9316
- The electrifying physiology of Geobacter bacteria, 30 years on.Adv. Microb. Physiol. 2019; 74 (31126529): 1-96
- Enrichment of DNRA bacteria in a continuous culture.ISME J. 2015; 9 (25909972): 2153-2161
- Role of nitrite in the competition between denitrification and DNRA in a chemostat enrichment culture.AMB Express. 2017; 7: 1-7
- Fermentative bacteria influence the competition between denitrifiers and DNRA bacteria.Front. Microbiol. 2017; 8 (28928722): 1684-1693
- The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA.Biochem. J. 2007; 406 (17521287): 19-30
- Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.Microb. Biotechnol. 2010; 3 (21255343): 455-466
- Overexpression of multi-heme c-type cytochromes.BioTechniques. 2005; 38 (15727136): 297-299
- Trapping of a putative intermediate in the cytochrome c nitrite reductase (ccNiR)-catalyzed reduction of nitrite: implications for the ccNiR reaction mechanism.J. Am. Chem. Soc. 2019; 141 (31381304): 13358-13371
- Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough.Biochim. Biophys. Acta. 2000; 1481: 119-130
- Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)–a heterooligomer heme protein with sulfite reductase activity.Biochem. Biophys. Res. Commun. 1996; 224 (8713097): 611-618
- Purification of Vibrio fischeri nitrite reductase and its characterization as a hexaheme c-type cytochrome.Arch. Biochem. Biophys. 1988; 262 (2833168): 259-265
- Purification of a hexaheme cytochrome c552 from Escherichia coli K 12 and its properties as a nitrite reductase.Eur. J. Biochem. 1986; 154 (3002798): 457-463
- Dissimilatory hexaheme c nitrite reductase of “Spirillum” strain 5175: purification and properties.Arch. Microbiol. 1991; 156: 70-74
- Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetraheme protein: new aspects of the molecular composition and spectroscopic properties.Biochem. Biophys. Res. Commun. 1994; 205 (7999130): 911-916
- Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies.Biotechnol. Genet. Eng. Rev. 2007; 24 (18059629): 117-128
- How to use dynamic light scattering to improve the likelihood of growing macromolecular crystals.in: Doublie S. Walker J.M. Methods in Molecular Biology. Humana Press, Totowa, New Jersey2007: 109-129
- Dynamic light scattering: a practical guide and applications in biomedical sciences.Biophys. Rev. 2016; 8 (28510011): 409-427
- CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.PLoS Comput. Biol. 2012; 8: 1-12
- Bacterial cytochrome c nitrite reductase: new structural and functional aspects.J. Inorg. Biochem. 2000; 79 (10830892): 381-385
- Escherichia coli cytochrome c nitrite reductase NrfA.Methods Enzymol. 2008; 437 (18433623): 63-77
- Binding and reduction of sulfite by cytochrome c nitrite reductase.Biochemistry. 2008; 47 (18201106): 2080-2086
- Resolution of key roles for the distal pocket histidine in cytochrome c nitrite reductases.J. Am. Chem. Soc. 2015; 137 (25658043): 3059-3068
- Refined NrfA phylogeny improves PCR-based nrfA gene detection.Appl. Environ. Microbiol. 2014; 80 (24463965): 2110-2119
- Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium.Appl. Environ. Microbiol. 2006; 72 (16597982): 2775-2782
- Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force.Biochemistry. 2014; 53 (24645742): 2136-2144
- Direct electrochemistry of Shewanella oneidensis cytochrome c nitrite reductase: evidence of interactions across the dimeric interface.Biochemistry. 2012; 51 (23210513): 10175-10185
- Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome c nitrite reductase.J. Biol. Chem. 2002; 277 (11970951): 23374-23381
- Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem.Biochem. J. 1999; 344: 237-244
- Thermodynamics of binding of the distal calcium to manganese peroxidase.Biochemistry. 1997; 36 (9214302): 8567-8573
- Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair.Structure. 2014; 22 (24239457): 104-115
- Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol.EMBO J. 1995; 14 (7664726): 3855-3863
- Search and subvert: minimalist bacterial phosphatidylinositol-specific phospholipase C enzymes.Chem. Rev. 2018; 118 (30148347): 8435-8473
- Novel Ca2+-independent carbohydrate recognition of the c-type lectins, SPL-1 and SPL-2, from the bivalve Saxidomus purpuratus.Protein Sci. 2019; 28 (30793424): 766-778
- Novel Ca2+-independent c-type lectin involved in immune defense of the razor clam Sinonovacula constricta.Fish Shellfish Immunol. 2019; 84 (30336286): 502-508
- Structure of the C2 domain from novel protein kinase Cϵ. A membrane binding model for Ca2+-independent C2 domains.J. Mol. Biol. 2001; 311 (11518534): 837-849
- Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review.Front. Bioeng. Biotechnol. 2016; 4 (26835451): 4-21
- Detecting adaptive convergent amino acid evolution.Philos. Trans. R. Soc. B Biol. Sci. 2019; 374: 20180234
- Causes and evolutionary significance of genetic convergence.Trends Genet. 2010; 26 (20685006): 400-405
- Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase.Biochemistry. 2008; 47 (18311941): 3789-3799
- Phylogeny of sulfate-reducing bacteria.FEMS Microbiol. Ecol. 2000; 31 (10620713): 1-9
- Inhibition of bacterial U(VI) reduction by calcium.Environ. Sci. Technol. 2003; 37 (12775057): 1850-1858
- Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103): 307-326
- Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.Acta Crystallogr. Sect. D Struct. Biol. 2019; 75 (31588918): 861-877
- Overview of the CCP4 suite and current developments.Acta Crystallogr. Sect. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Features and development of Coot.Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res. 2004; 32 (15034147): 1792-1797
- Search and clustering orders of magnitude faster than BLAST.Bioinformatics. 2010; 26 (20709691): 2460-2461
- Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10.Virus Evol. 2018; 4: vey016
- MEGA X: molecular evolutionary genetics analysis across computing platforms.Mol. Biol. Evol. 2018; 35 (29722887): 1547-1549
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—J. C., N. L., G. R., and E. L. H. conceptualization; J. C., S. L., Z. W., G. R., and J. H. data curation; J. C., S. L., Z. W., V. S. A., N. L., G. R., J. H., and E. L. H. formal analysis; J. C., S. L., Z. W., V. S. A., G. R., and J. H. investigation; J. C., S. L., V. S. A., N. L., G. R., J. H., and E. L. H. methodology; J. C. writing-original draft; J. C., S. L., N. L., G. R., J. H., and E. L. H. writing-review and editing; S. L., Z. W., V. S. A., and J. H. visualization; N. L., G. R., and E. L. H. resources; N. L., G. R., J. H., and E. L. H. supervision; N. L., G. R., and E. L. H. funding acquisition; N. L., G. R., and E. L. H. project administration.
Funding and additional information—This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0017952 (to G. R. and E. L. H.) and award no. DE-SC0018173 (to N. L.).
Conflict of interest—The authors declare no conflicts of interest in regards to this work.
Abbreviations—The abbreviations used are: DNRA
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Correction: Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclassJournal of Biological ChemistryVol. 298Issue 12
- PreviewThe authors report that in Figure S4 the value 1.63 of NrfA Ve/V0 is incorrect due to a typo and that the actual value of NrfA Ve/V0 is 1.93. Using this the corrected Ve/V0 value of 1.93 results in a calculated NrfA molecular weight of approximately 52 kDa. This new calculated value agrees well with the actual molecular weight of NrfA (∼56 kDa), and it further supports the conclusion that NrfA behaves as a monomer in solution under these conditions.
- Full-Text
- Preview