- cancer-associated antigen
- melanoma antigen-A4 (MAGE-A4)
- immuno-oncology
- crystal structure
- peptide-human leukocyte antigen (pHLA)
- surface plasmon resonance (SPR)
- T cell receptor (TCR)
- adaptive immunity
- antigen recognition
- cancer therapy
- immunotherapy
- antigen presentation
- MAGE-A4
- peptide-human leukocyte antigen
- T cell receptor
- Holland C.J.
- MacLachlan B.J.
- Bianchi V.
- Hesketh S.J.
- Morgan R.
- Vickery O.
- Bulek A.M.
- Fuller A.
- Godkin A.
- Sewell A.K.
- Rizkallah P.J.
- Wells S.
- Cole D.K.
- Cole D.K.
- Miles K.M.
- Madura F.
- Holland C.J.
- Schauenburg A.J.A.A.
- Godkin A.J.
- Bulek A.M.
- Fuller A.
- Akpovwa H.J.E.E.
- Pymm P.G.
- Liddy N.
- Sami M.
- Li Y.
- Rizkallah P.J.
- Jakobsen B.K.
- et al.
- Marchand M.
- van Baren N.
- Weynants P.
- Brichard V.
- Dréno B.
- Tessier M.-H.
- Rankin E.
- Parmiani G.
- Arienti F.
- Humblet Y.
- Bourlond A.
- Vanwijck R.
- Liénard D.
- Beauduin M.
- Dietrich P.-Y.
- et al.
Results
Identification of an HLA-A*02:01–restricted MAGE-A4 (GVYDGREHTV)–specific TCR and structural determination of its engagement mode
A2-AVY | GVY01-A2-GVY TCR-pHLA complex | |
---|---|---|
PDB accession code | 6TRN | 6TRO |
Data collection | ||
Space group | P21 | P64 2 2 |
Cell dimensions | ||
a, b, c (Å) | 56.0, 80.7, 58.7 | 220.0, 220.0, 96.8 |
α, β, γ (degrees) | 90.0, 115.1, 90.0 | 90.0, 90.0, 120.0 |
Resolution (Å) | 48.31–1.35 (1.37–1.35) | 67.91–3.00 (3.05–3.00) |
Rmerge (%) | 4.7 (92.1) | 9.4 (180) |
Rpim (%) | 2.8 (65.9) | 3.7 (68.7) |
CC½ | 0.999 (0.552) | 0.998 (0.499) |
I/σI | 12.2 (1.0) | 13.5 (1.21) |
Completeness (%) | 99.5 (99.7) | 98.6 (99.6) |
Multiplicity | 3.6 (2.9) | 6.60 (6.80) |
Refinement | ||
Resolution (Å) | 48.31–1.35 (1.39–1.35) | 67.91–3.00 (3.08–3.00) |
No. of reflections | 97,575 (7596) | 26,360 (2023) |
Rwork/Rfree | 16.1/20.0 (29.2/32.5) | 21.3/27.0 (34.1/37.3) |
No. of atoms | ||
Protein | 3190 | 6572 |
Water | 439 | 23 |
Ethylene glycol | 12 | |
B-Factors | ||
Protein | 24.1 | 111.6 |
Water | 36.8 | 73.8 |
Ethylene glycol | 25.9 | |
Root mean square deviations | ||
Bond lengths (Å) | 0.008 | 0.002 |
Bond angles (degrees) | 1.467 | 1.203 |


The conformation of HLA residue Trp-167 is governed by position 1 in the peptide


Discussion
- Raman M.C.C.
- Rizkallah P.J.
- Simmons R.
- Donnellan Z.
- Dukes J.
- Bossi G.
- Le Provost G.S.
- Todorov P.
- Baston E.
- Hickman E.
- Mahon T.
- Hassan N.
- Vuidepot A.
- Sami M.
- Cole D.K.
- et al.
- Cole D.K.
- Miles K.M.
- Madura F.
- Holland C.J.
- Schauenburg A.J.A.A.
- Godkin A.J.
- Bulek A.M.
- Fuller A.
- Akpovwa H.J.E.E.
- Pymm P.G.
- Liddy N.
- Sami M.
- Li Y.
- Rizkallah P.J.
- Jakobsen B.K.
- et al.
- Cole D.K.
- Van Den Berg H.A.
- Lloyd A.
- Crowther M.D.
- Beck K.
- Ekeruche-Makinde J.
- Miles J.J.
- Bulek A.M.
- Dolton G.
- Schauenburg A.J.
- Wall A.
- Fuller A.
- Clement M.
- Laugel B.
- Rizkallah P.J.
- et al.
Experimental procedures
TCR generation, engineering, cloning, protein expression, and purification
Biochemical assays
Crystallization, data collection, data processing, and refinement
Data availability
Acknowledgments
Supplementary Material
References
- Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients.J. Exp. Med. 2012; 209 (22213807): 51-60
- Structural basis for the killing of human beta cells by CD8+T cells in type 1 diabetes.Nat. Immunol. 2012; 13 (22245737): 283-289
- Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor.J. Biol. Chem. 2009; 284 (19605354): 27281-27289
- Dual molecular mechanisms govern escape at immunodominant HLA A2-restricted HIV epitope.Front. Immunol. 2017; 8 (29209312): 1503
- Alloreactivity between disparate cognate and allogeneic pMHC-I complexes is the result of highly focused, peptide-dependent structural mimicry.J. Biol. Chem. 2006; 281 (16963442): 34324-34332
- Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity.J. Clin. Invest. 2016; 126 (27183389): 2191-2204
- Structural and biophysical determinants of αβ T-cell antigen recognition.Immunology. 2012; 135 (22044041): 9-18
- Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies.Eur. J. Immunol. 2012; 42 (22949370): 3174-3179
- Molecular interactions mediating T cell antigen recognition.Annu. Rev. Immunol. 2003; 21 (12615890): 659-684
- Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function.J. Immunol. 2010; 184 (20351194): 4936-4946
- Mechanisms for T cell receptor triggering.Nat. Rev. Immunol. 2011; 11 (21127503): 47-55
- In silico and structural analyses demonstrate that intrinsic protein motions guide T cell receptor complementarity determining region loop flexibility.Front. Immunol. 2018; 9 (29696015): 674
- Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes.Biochem. J. 2008; 415 (18800968): 183-196
- TCR binding to peptide-MHC stabilizes a flexible recognition interface.Immunity. 1999; 10 (10204491): 357-365
- Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation.Mol. Cell. 2003; 12 (14690592): 1367-1378
- TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility.J. Immunol. 2014; 192 (24523505): 2885-2891
- Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism.J. Mol. Biol. 2011; 414 (22019736): 385-400
- Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity.Sci. Rep. 2016; 6 (27118724): 25070
- Limitations of time-resolved fluorescence suggested by molecular simulations: assessing the dynamics of T cell receptor binding loops.Biophys. J. 2012; 103 (23260055): 2532-2540
- Large scale characterization of the LC13 TCR and HLA-B8 structural landscape in reaction to 172 altered peptide ligands: a molecular dynamics simulation study.PLoS Comput. Biol. 2014; 10 (25101830): e1003748
- Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex.PLoS Comput. Biol. 2012; 8 (22412359): e1002404
- Structure of the human class I histocompatibility antigen, HLA-A2.Nature. 1987; 329 (3309677): 506-512
- Structure of the complex between human T-cell receptor, viral peptide and HLA-A2.Nature. 1996; 384 (8906788): 134-141
- T cell antigen receptor recognition of antigen-presenting molecules.Annu. Rev. Immunol. 2015; 33 (25493333): 169-200
- T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions.J. Biol. Chem. 2014; 289 (24196962): 628-638
- The shaping of T cell receptor recognition by self-tolerance.Immunity. 2009; 30 (19167249): 193-203
- A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity.Immunity. 2003; 18 (12530975): 53-64
- Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop.Nat. Commun. 2013; 4 (24136005): 2623
- Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor.Nat. Immunol. 2005; 6 (15821740): 490-496
- T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex.Nat. Immunol. 2015; 16 (26437244): 1153-1161
- A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule.Nat. Immunol. 2007; 8 (17259989): 268-276
- A molecular switch abrogates glycoprotein 100 (gp100) T-cell receptor (TCR) targeting of a human melanoma antigen.J. Biol. Chem. 2016; 291 (26917722): 8951-8959
- Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition.J. Immunol. 2010; 185 (20639478): 2600-2610
- Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1.Int. J. Cancer. 1999; 80 (9935203): 219-230
- High-resolution structure of HLA-A*0201 in complex with a tumour-specific antigenic peptide encoded by the MAGE-A4 gene.J. Mol. Biol. 2001; 310 (11502003): 1167-1176
- Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides.Eur. J. Immunol. 2015; 45 (25471691): 584-591
- TCR-induced alteration of primary MHC peptide anchor residue.Eur. J. Immunol. 2019; 49 (31091334): 1052-1066
- Human TCR-binding affinity is governed by MHC class restriction.J. Immunol. 2007; 178 (17442956): 5727-5734
- Directed evolution of human T-cell receptors with picomolar affinities by phage display.Nat. Biotechnol. 2005; 23 (15723046): 349-354
- Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor.Nat. Med. 2008; 14 (18997777): 1390-1395
- NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma.Nat. Med. 2015; 21 (26193344): 914-921
- Monoclonal TCR-redirected tumor cell killing.Nat. Med. 2012; 18 (22561687): 980-987
- Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA.J. Clin. Invest. 2020; 130 (32310221): 2673-2688
- Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells.Sci. Transl. Med. 2013; 5 (23926201): 197ra103
- Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma.Blood. 2013; 122 (23770775): 863-871
- Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.Sci. Rep. 2016; 6 (26758806): 18851
- Increased peptide contacts govern high affinity binding of a modified TCR whilst maintaining a native pMHC docking mode.Front. Immunol. 2013; 4 (23805144): 168
- T-cell receptor specificity maintained by altered thermodynamics.J. Biol. Chem. 2013; 288 (23698002): 18766-18775
- Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity.Protein Sci. 2006; 15 (16600963): 710-721
- Crystal structures of high affinity human T-cell receptors bound to peptide major histocompatibility complex reveal native diagonal binding geometry.Protein Eng. Des. Sel. 2007; 20 (17644531): 397-403
- Structural mechanism underpinning cross-reactivity of a CD8+T-cell clone that recognizes a peptide derived from human telomerase reverse transcriptase.J. Biol. Chem. 2017; 292 (27903649): 802-813
- Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection.PLoS Pathog. 2010; 6 (21124993): e1001198
- The structural basis for the increased immunogenicity of two HIV-reverse transcriptase peptide variant/class I major histocompatibility complexes.J. Biol. Chem. 1999; 274 (10601290): 37259-37264
- Major histocompatibility complex class I (FLA-E*01801) molecular structure in domestic cats demonstrates species-specific characteristics in presenting viral antigen peptides.J. Virol. 2018; 92 (29263258): e01631-e01717
- Distortion of the major histocompatibility complex class i binding groove to accommodate an insulin-derived 10-mer peptide.J. Biol. Chem. 2015; 290 (26085090): 18924-18933
- Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity.Eur. J. Immunol. 2012; 42 (22678897): 1405-1416
- Peptide and peptide-dependent motions in MHC proteins: immunological implications and biophysical underpinnings.Front. Immunol. 2017; 8 (28824655): 935
- T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility.Immunity. 2009; 31 (20064447): 885-896
- Peptide modulation of class I major histocompatibility complex protein molecular flexibility and the implications for immune recognition.J. Biol. Chem. 2013; 288 (23836912): 24372-24381
- Dynamically driven allostery in MHC proteins: peptide-dependent tuning of class I MHC global flexibility.Front. Immunol. 2019; 10 (31130956): 966
- Computational design and crystal structure of an enhanced affinity mutant human CD8 αα coreceptor.Proteins. 2007; 67 (17243170): 65-74
- Linking crystallographic model and data quality.Science. 2012; 336 (22628654): 1030-1033
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Refinement of macromolecular structures by the maximum-likelihood method.Acta Crystallogr. Sect. D Biol. Crystallogr. 1997; 53 (15299926): 240-255
- Coot: Model-building tools for molecular graphics.Acta Crystallogr. Sect. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- The Protein Data Bank.Nucleic Acids Res. 2000; 28 (10592235): 235-242
- IMGT®, the international ImMunoGeneTics information system®.Nucleic Acids Res. 2009; 37 (18978023): D1006-D1012
DeLano, W. L., The PyMOL Molecular Graphics System, version 1, Schrödinger, LLC, New York.
- Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.Acta Crystallogr. Sect. D Biol. Crystallogr. 2004; 60 (15572779): 2256-2268
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—C. H. C., C. M., D. K. C., and S. H. formal analysis; C. H. C., C. M., A. L., M. H., L. H., M. C. C. R., C. H., P. L., D. K. C., and S. H. investigation; C. H. C., C. M., A. L., M. H., L. H., M. C. C. R., C. H., and P. L. methodology; C. H. C., C. M., M. H., D. K. C., and S. H. writing-review and editing; D. K. C. and S. H. supervision; D. K. C. writing-original draft; D. K. C. project administration; S. H. conceptualization.
Conflict of interest—C. C., C. M., A. L., M. H., L. H., M. C. C. R., C. H., D. K. C., and S. H. are/were employees of Immunocore Ltd. P. L. was an employee of Genentech Inc. The authors declare that the research was conducted in the absence of any other commercial or financial relationships that could be construed as a potential conflict of interest.
Abbreviations—The abbreviations used are: pHLA
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy