
Results
Quaternary structure of HydA1, HydF, and their interaction complex
Examining quaternary structure of the apo-proteins by size-exclusion chromatography and GEMMA

The effect of cofactor content on the quaternary structure of isolated HydF and HydA1

The effect of cofactor content on the HydF–HydA1 interaction

In silico protein–protein docking

Preparation and reactivity of truncated HydF


Discussion
Experimental procedures
General
Construction of truncated HydF proteins
HydFΔDG (the FeS cluster domain of HydF fused with an N-terminal MBP tag)
HydFΔD (the FeS cluster domain and the GTPase domain of HydF)
Protein expression and purification
Preparation of apo-proteins
Size-exclusion chromatography
In vitro reconstitution and assembly of the holo-proteins
EPR sample preparation and measurements
FTIR spectroscopy
GEMMA sample preparation and measurements
Protein–protein docking
Data availability
Acknowledgments
Supplementary Material
References
- Hydrogenases.Chem. Rev. 2014; 114 (24655035): 4081-4148
- From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production.Sustainable Energy Fuels. 2018; 2 (31497651): 724-750
- Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG.Nature. 2010; 465: 248-251
- Activation of HydA1ΔEFG requires a preformed [4Fe-4S] Cluster.Biochem. 2009; 48 (19435321): 6240-6248
- Iron–sulphur cluster biogenesis via the SUF pathway.Metallomics. 2018; 10 (30019043): 1038-1052
- Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.J. Bacteriol. 2006; 188 (16513746): 2163-2172
- Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima.FEBS Lett. 2005; 579 (16137685): 5055-5060
- The radical SAM enzyme HydG requires cysteine and a dangler iron for generating an organometallic precursor to the [FeFe]-hydrogenase H-cluster.J. Am. Chem. Soc. 2016; 138 (26764535): 1146-1149
- Biosynthesis of the [FeFe] hydrogenase H cluster: a central role for the radical SAM enzyme HydG.Inorg. Chem. 2016; 55 (26703931): 478-487
- A radical intermediate in tyrosine scission to the CO and CN− ligands of FeFe hydrogenase.Science. 2013; 342 (24159045): 472-475
- Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.Nat. Chem. 2016; 8 (27102684): 491-500
- [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis.Biochemistry. 2015; 54 (25654171): 1807-1818
- HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis.FEBS Lett. 2008; 582 (18501709): 2183-2187
- Biomimetic assembly and activation of [FeFe]-hydrogenases.Nature. 2013; 499 (23803769): 66-69
- [FeFe]-hydrogenase maturation.Biochemistry. 2014; 53 (24878200): 4090-4104
- The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN-ligated iron cofactor.FEBS Lett. 2010; 584 (20018187): 638-642
- Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold.Proc. Natl. Acad. Sci. U S A. 2010; 107 (20498089): 10448-10453
- Structural and functional characterization of the hydrogenase-maturation HydF protein.Nat. Chem. Biol. 2017; 13 (28553946): 779-784
- Monitoring H-cluster assembly using a semi-synthetic HydF protein.Dalton Trans. 2019; 48 (30632592): 5978-5986
- Compositional and structural insights into the nature of the H-cluster precursor on HydF.Dalton Trans. 2018; 47 (29964288): 9521-9535
- The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster.J. Biol. Chem. 2006; 281 (16278209): 769-774
- Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation.J. Biol. Chem. 2011; 286 (22057316): 43944-43950
- Biochemical analysis of the interactions between the proteins involved in the [FeFe]-hydrogenase maturation process.J. Biol. Chem. 2012; 287 (22932901): 36544-36555
- Diversity in overall activity regulation of ribonucleotide reductase.J. Biol. Chem. 2015; 290 (25971975): 17339-17348
- Oligomerization status directs overall activity regulation of the Escherichia coli Class IA ribonucleotide reductase.J. Biol. Chem. 2008; 283 (18835811): 35310-35318
- [FeFe] hydrogenases and their evolution: a genomic perspective.Cell. Mol. Life Sci. 2007; 64: 1063-1084
- Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities.Appl. Environ. Microbiol. 2005; 71 (15870373): 2777-2781
- From enzyme maturation to synthetic chemistry: the case of hydrogenases.Acc. Chem. Res. 2015; 48 (26165393): 2380-2387
- In vivo EPR characterization of semi-synthetic [FeFe] hydrogenases. In vivo EPR characterization of semi-synthetic [FeFe] hydrogenases.Angew. Chem. Int. Ed. 2018; 57 (29334424): 2596-2599
- An EPR/HYSCORE, Mossbauer, and resonance Raman study of the hydrogenase maturation enzyme HydF: a model for N-coordination to 4Fe-4S clusters.J. Biol. Inorg. Chem. 2014; 19 (24240692): 75-84
- Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic.Nat. Chem. Biol. 2013; 9 (23934246): 607-609
- Electron spin relaxation and biochemical characterization of the hydrogenase maturase HydF: insights into [2Fe-2S] and [4Fe-4S] cluster communication and hydrogenase activation.Biochemistry. 2017; 56 (28525271): 3234-3247
- How good is automated protein docking?.Proteins. 2013; 81 (23996272): 2159-2166
- The ClusPro web server for protein-protein docking.Nat. Protoc. 2017; 12: 255-278
- New additions to the ClusPro server motivated by CAPRI.Proteins. 2017; 85 (27936493): 435-444
- Amber 14. University of California, San Francisco2014
- Overview of the maturation machinery of the H-cluster of [FeFe]-hydrogenases with a focus on HydF.Int. J. Mol. Sci. 2018; 19: 3118
- Insights into [FeFe]-hydrogenase structure, mechanism, and maturation.Structure. 2011; 19 (21827941): 1038-1052
- The final steps of [FeFe]-hydrogenase maturation.Proc. Natl. Acad. Sci. U S A. 2019; 116 (31337676): 15802-15810
- Electrochemical investigations of the mechanism of assembly of the active-site H-cluster of [FeFe]-Hydrogenases.J. Am. Chem. Soc. 2016; 138: 15227-15233
- In vivo activation of an [FeFe] hydrogenase using synthetic cofactors.Energy Environ. Sci. 2017; 10: 1563-1567
- Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples.Methods Enzymol. 1988; 158 (3374387): 357-364
- Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases.J. Am. Chem. Soc. 2002; 124 (11817928): 726-727
- Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4.J. Am. Chem. Soc. 2012; 134 (23095145): 19260-19269
- Announcing the worldwide Protein Data Bank.Nat. Struct. Biol. 2003; 10 (14634627): 980
- YASARA View–molecular graphics for all devices–from smartphones to workstations.Bioinformatics. 2014; 30 (24996895): 2981-2982
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—B. N. data curation; B. N., A. M., A. H., and G. B. formal analysis; B. N., H. L., and A. H. investigation; B. N. and H. L. visualization; B. N., H. L., and A. H. methodology; B. N. writing-original draft; B. N., H. L., A. M., A. H., and G. B. writing-review and editing; A. M. and G. B. project administration; A. H. and G. B. resources; G. B. conceptualization; G. B. supervision; G. B. funding acquisition.
Funding and additional information—This work has been supported by grants from the Swedish Research Council, VR (G. B.; contract no. 621-2014-5670), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, Formas (G. B.; contract no. 213-2014-880), The Wenner-Gren Foundations (C. E. and G. B.), and the ERC (StG contract no. 714102).
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for Brigitta Németh: Dept. of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
Abbreviations—The abbreviations used are: adt
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy