Introduction

Results
Mutation of H4 basic patch leads to reduced levels of H2B monoubiquitylation
- van Welsem T.
- Korthout T.
- Ekkebus R.
- Morais D.
- Molenaar T.M.
- van Harten K.
- Poramba-Liyanage D.W.
- Sun S.M.
- Lenstra T.L.
- Srivas R.
- Ideker T.
- Holstege F.C.P.
- van Attikum H.
- El Oualid F.
- Ovaa H.
- et al.
H4 basic patch mutant cells display phenotypes associated with the absence of H2Bub1

The H4 basic patch and the ATP-dependent chromatin remodeler Chd1 regulate H2Bub1 by different mechanisms

H4 basic patch regulation of H2B ubiquitylation is independent of the ubiquitylation machinery

The H4 basic patch regulates SAGA-associated Ubp8 deubiquitination

The H4 basic patch regulates SAGA-dependent H3 acetylation

Discussion
Experimental procedures
Yeast strains
Preparation of whole-cell extracts and immunoblots
Yeast spotting assays
Optogenetic and in vivo DUB assays
Antibodies
Galactose induction
Quantitative real-time PCR
In vitro DUB assays
Author contributions
Acknowledgments
Supplementary Material
References
- Lateral thinking: how histone modifications regulate gene expression.Trends Genet. 2016; 32 (26704082): 42-56
- The role of the nucleosome acidic patch in modulating higher order chromatin structure.J. R. Soc. Interface. 2013; 10 (23446052): 20121022
- Nucleosome structure and function.Chem. Rev. 2015; 115 (25495456): 2255-2273
- A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway.Genes Dev. 2007; 21 (17675446): 2018-2029
- Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin.Mol. Cell. 2007; 28 (18158898): 1002-1014
- Histone H4-K16 acetylation controls chromatin structure and protein interactions.Science. 2006; 311 (16469925): 844-847
- Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI.Mol. Cell Biol. 2001; 21 (11154274): 875-883
- Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF.Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (11724935): 14316-14321
- A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.Nucleic Acids Res. 2002; 30 (11809876): 649-655
- Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes.Nature. 2012; 492 (23143334): 280-284
- The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme.J. Mol. Biol. 2014; 426 (24607692): 2034-2044
- Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure.Nature. 2017; 544 (28424519): 440-445
- Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome.Elife. 2018; 7 (30079888): e35720
- Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6.J. Biol. Chem. 2002; 277 (12070136): 28368-28371
- Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast.Nature. 2002; 418 (12077605): 104-108
- trans-Histone regulatory pathway in chromatin.Nature. 2002; 418 (12152067): 498
- Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79.J. Biol. Chem. 2002; 277 (12167634): 34655-34657
- H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation.Mol. Cell. 2008; 31 (18614047): 57-66
- Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19805358): 16686-16691
- Histone ubiquitination: triggering gene activity.Mol. Cell. 2008; 29 (18374642): 653-663
- Rad6-dependent ubiquitination of histone H2B in yeast.Science. 2000; 287 (10642555): 501-504
- Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter.Mol. Cell. 2003; 11 (12535539): 267-274
- Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B.Genes Dev. 2004; 18 (14752010): 184-195
- Genome-wide function of H2B ubiquitylation in promoter and genic regions.Genes Dev. 2011; 25 (22056671): 2254-2265
- Splitting the task: Ubp8 and ubp10 deubiquitinate different cellular pools of H2BK123.Genes Dev. 2011; 25 (22056669): 2242-2247
- The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription.Genes Dev. 2014; 28 (25228644): 1999-2012
- SAGA is a general cofactor for RNA polymerase II transcription.Mol. Cell. 2017; 68 (28918903): 130-143.e5
- Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.Genes Dev. 2003; 17 (14563679): 2648-2663
- H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex.Mol. Cell. 2007; 27 (17643376): 275-288
- Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing.Mol. Cell. 2005; 17 (15721261): 585-594
- Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin.Mol. Cell Biol. 2005; 25 (15988024): 6123-6139
- Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response.J. Biol. Chem. 2004; 279 (14623890): 6414-6425
- FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics.Elife. 2019; 8 (30681413): e40988
- Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism.Nucleic Acids Res. 2018; 46 (30203048): 11251-11261
- A bre1-associated protein, large 1 (Lge1), promotes h2b ubiquitylation during the early stages of transcription elongation.J. Biol. Chem. 2010; 285 (19923226): 2361-2367
- The Paf1 complex subunit rtf1 buffers cells against the toxic effects of [PSI+] and defects in rkr1-dependent protein quality control in Saccharomyces cerevisiae.Genetics. 2012; 191 (22595241): 1107-1118
- Histone H2B ubiquitylation is associated with elongating RNA polymerase II.Mol. Cell Biol. 2005; 25 (15632065): 637-651
- Codependency of H2B monoubiquitination and nucleosome reassembly on Chdl.Genes Dev. 2012; 26 (22549955): 914-919
- Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination.Mol. Cell Biol. 2010; 30 (20439497): 3216-3232
- The nucleosome acidic patch regulates the H2B K123 monoubiquitylation cascade and transcription elongation in Saccharomyces cerevisiae.PLoS Genet. 2015; 11 (26241481): e1005420
- Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription.Genes Dev. 2014; 28 (25085417): 1647-1652
- Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.Nat. Chem. Biol. 2016; 12 (27089030): 399-401
- SAGA function in tissue-specific gene expression.Trends Cell Biol. 2012; 22 (22196215): 177-184
- The bromodomain of gcn5 regulates site specificity of lysine acetylation on histone H3.Mol. Cell Proteomics. 2014; 13 (25106422): 2896-2910
- Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.EMBO J. 2014; 33 (25216679): 2534-2546
- Structural insights into the assembly and function of the SAGA deubiquitinating module.Science. 2010; 328 (20395473): 1025-1029
- A role for intersubunit interactions in maintaining SAGA deubiquitinating module structure and activity.Structure. 2012; 20 (22771212): 1414-1424
- Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module.Cell. 2010; 141 (20434206): 606-617
- Structural basis for histone H2B deubiquitination by the SAGA DUB module.Science. 2016; 351 (26912860): 725-728
- DNA binding by Sgf11 protein affects histone H2B deubiquitination by Spt–Ada–Gcn5–acetyltransferase (SAGA).J. Biol. Chem. 2014; 289 (24509845): 8989-8999
- A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes.Yeast. 2004; 21 (15334558): 947-962
- Preparation of yeast RNA.Curr. Protoc. Mol. Biol. 2001; (Chapter 13, Unit 13.12) (18265096)
- Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells.Methods. 2013; 59 (23079396): 71-79
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant GM126900 (to B. D. S.) and Cancer Cell Biology Training Program Grant T32CA071341 (to H. A. M.). B. D. S. acknowledges that he is a cofounder of EpiCypher, Inc. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1–S3 and Figs. S1–S4.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy