Introduction
Results
Human HC1 has an integrin-like structure
WT | D298A | |
---|---|---|
Protein Data Bank code | 6FPY | 6FPZ |
Wavelength | 0.92 Å | 0.92 Å |
Resolution range | 71–2.3 (2.4–2.3) | 56.8–2.2 (2.3–2.2) |
Space group | P 42 | P 42 |
Unit cell | 158.8, 158.8, 65.4, 90, 90, 90 | 159.7, 159.7, 65.79, 90, 90, 90 |
Total reflections | 455,794 (45,882) | 312,045 (26,776) |
Unique reflections | 69,109 (6862) | 83,837 (8233) |
Multiplicity | 6.6 (6.7) | 3.7 (3.3) |
Completeness (%) | 91.94 (87.58) | 94.27 (88.13) |
Mean I/σI | 8.02 (1.88) | 10.93 (2.05) |
Wilson B-factor | 37.46 | 34.70 |
Rmerge | 0.1432 (0.8002) | 0.06619 (0.4731) |
Rmeas | 0.1554 (0.8681) | 0.07734 (0.5596) |
Rpim | 0.05991 (0.3337) | 0.03928 (0.2917) |
CC½ | 0.994 (0.523) | 0.995 (0.478) |
CC* | 0.998 (0.829) | 0.999 (0.804) |
Reflections used in refinement | 63,610 (6027) | 79,667 (7405) |
Reflections used for Rfree | 3194 (306) | 3983 (347) |
Rwork | 0.2317 (0.3810) | 0.2174 (0.3701) |
Rfree | 0.2605 (0.4195) | 0.2475 (0.3641) |
CCwork | 0.953 (0.726) | 0.954 (0.730) |
CCfree | 0.946 (0.696) | 0.948 (0.768) |
Number of non-hydrogen atoms | 9702 | 10,106 |
Macromolecules | 9319 | 9335 |
Ligands | 38 | 58 |
Solvent | 345 | 713 |
Protein residues | 1201 | 1196 |
RMSD | ||
Bonds | 0.004 | 0.003 |
Angles | 1.03 | 0.92 |
Ramachandran (%) | ||
Favored | 97.65 | 98.15 |
Allowed | 2.27 | 1.85 |
Outliers | 0.08 | 0.00 |
Rotamer outliers (%) | 1.20 | 1.00 |
Clashscore | 1.78 | 1.71 |
Average B-factor | 49.67 | 45.75 |
Macromolecules | 49.92 | 45.76 |
Ligands | 62.82 | 71.64 |
Solvent | 41.55 | 43.54 |
Number of TLS groups | 8 | 6 |


rHC1 forms MIDAS and metal-ion dependent homodimers

Protein | Metal ion | RgSAXS | DmaxSAXS | MwtSAXS (ratio SAXS mass/intact mass) | s(20,w)AUC | s(20,w)SAXS |
---|---|---|---|---|---|---|
Å | Å | kDa | S | S | ||
rHC1 WT | None | 35.2 | 123 | |||
EDTA (2.5 mm) | 31.8 | 112 | 78 (1.06) | 4.39 | 4.50 | |
Mg2+ (5 mm) | 49.5 | 170 | 140 (1.89) | 4.59 (monomer), 6.11(dimer) | 6.24 | |
Mn2+ (5 mm) | 51.2 | 172 | ||||
Ca2+ (5 mm) | 38.5 | 135 | ||||
rHC1 D298A | None | 33.3 | 114 | |||
Mg2+ (5 mm) | 33.3 | 114 | ||||
Mn2+ (5 mm) | 32.8 | 105 | ||||
Ca2+ (5 mm) | 32.8 | 115 | ||||
IαI | Mg2+ (5 mm) | 49.2 | 170 |
rHC1 structure enables SAXS-based modeling of IαI

rHC1 inhibits the alternative complement pathway via C3 binding in a MIDAS-dependent manner

Immobilized ligand | Analyte | Buffer conditions | Replicates | KD ± S.D. |
---|---|---|---|---|
nm | ||||
C3 | rHC1 (WT) | 2 mm Mg2+, 2 mm Mn2+ | 3 | 364 ± 78 |
C3 | rHC1 (WT) | 2 mm Mn2+ | 3 | 473 ± 329 |
C3 | rHC1 (D298A) | 2 mm Mg2+, 2 mm Mn2+ | 3 | NB |
C3 | IαI | 2 mm Mg2+, 2 mm Mn2+ | 3 | 659 ± 205 |
rHC1 (WT) | Vitronectin | 10 mm EDTA | 3 | 0.192 ± 0.014 |
rHC1 (WT) | Vitronectin | 2 mm Mg2+, 2 mm Mn2+ | 3 | 0.118 ± 0.011 |
rHC1 (D298A) | Vitronectin | 10 mm EDTA | 3 | 0.138 ± 0.040 |
rHC1 (D298A) | Vitronectin | 2 mm Mg2+, 2 mm Mn2+ | 3 | 0.096 ± 0.044 |
rHC1 (ΔvWFa) | Vitronectin | 10 mm EDTA | 3 | 0.097 ± 0.049 |
rHC1 (WT) | TGFβ1-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 16.1 ± 5.5 |
rHC1 (D298A) | TGFβ1-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 14.9 ± 2.7 |
rHC1 (WT) | TGFβ2-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 8.8 ± 0.6 |
rHC1 (D298A) | TGFβ2-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 12.9 ± 1.7 |
rHC1 (WT) | TGFβ3-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 9.9 ± 1.4 |
rHC1 (D298A) | TGFβ3-LAP | 2 mm Mg2+, 2 mm Mn2+ | 3 | 3.1 ± 0.8 |
rHC1 (WT) | LAP (TGFβ1) | 10 mm EDTA | 3 | 2.0 ± 0.3 |
rHC1 (WT) | TGFβ1 | 10 mm EDTA | 3 | NB |
rHC1 (WT) | TGFβ3 | 10 mm EDTA | 3 | NB |
rHC1 (WT) | LTBP1 NT1 | 10 mm EDTA | 3 | 5.1 ± 0.5 |
rHC1 (WT) | LTBP1 NT1 | 2 mm Mg2+, 2 mm Mn2+ | 3 | 4.6 ± 0.2 |
rHC1 (WT) | LTBP1 EGF | 2 mm Mg2+, 2 mm Mn2+ | 3 | NB |
rHC1 (WT) | LTBP1 CT | 2 mm Mg2+, 2 mm Mn2+ | 3 | NB |
rHC1 (WT) | cFN13–14 | No added M2+ or EDTA | 3 | 14.0 ± 0.12 |
rHC1 (D298A) | cFN13–14 | No added M2+ or EDTA | 3 | 15.7 ± 0.18 |
rHC1 (ΔvWFa) | cFN13–14 | No added M2+ or EDTA | 3 | 16.3 ± 0.18 |
HC1 binds to integrin ligands in a MIDAS- and vWFA-independent manner
Discussion
Experimental procedures
Protein production
Crystal structure determination of rHC1
Small angle X-ray scattering and modeling of IαI, rHC1, and rHC1–C3 complex
Analytical ultracentrifugation of rHC1
Surface plasmon resonance of rHC1–ligand interactions
C3 convertase assay
Data availability
Author contributions
Acknowledgments
Supplementary Material
References
- Analysis of inter-α-trypsin inhibitor and a novel trypsin inhibitor, pre-α-trypsin inhibitor, from human plasma: polypeptide chain stoichiometry and assembly by glycan.J. Biol. Chem. 1989; 264 (2476436): 15975-15981
- Defect in SHAP-hyaluronan complex causes severe female infertility: a study by inactivation of the bikunin gene in mice.J. Biol. Chem. 2001; 276 (11145954): 7693-7696
- Impaired fertility in female mice lacking urinary trypsin inhibitor.Biochem. Biophys. Res. Commun. 2001; 281 (11243855): 1154-1160
- Micromechanical analysis of the hyaluronan-rich matrix surrounding the oocyte reveals a uniquely soft and elastic composition.Biophys. J. 2016; 110 (27332136): 2779-2789
- Extracellular matrix of the cumulus–oocyte complex.Semin. Reprod. Med. 2006; 24 (16944419): 217-227
- Organization of the expanded cumulus–extracellular matrix in preovulatory follicles: a role for inter-α-trypsin inhibitor.Endocr. Regul. 2015; 49 (25687679): 37-45
- Two distinct populations of tumor necrosis factor-stimulated gene-6 protein in the extracellular matrix of expanded mouse cumulus cell–oocyte complexes.Arch. Biochem. Biophys. 2001; 394 (11594731): 173-181
- Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan.J. Biol. Chem. 2005; 280 (15840581): 25674-25686
- TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties.Matrix Biol. 2019; 78-79: 60-83
- Metal ion-dependent heavy chain transfer activity of TSG-6 mediates assembly of the cumulus-oocyte matrix.J. Biol. Chem. 2015; 290 (26468290): 28708-28723
- Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice.Development. 2003; 130 (12668637): 2253-2261
- Disrupted function of tumor necrosis factor-α-stimulated gene 6 blocks cumulus cell-oocyte complex expansion.Endocrinology. 2003; 144 (12959984): 4376-4384
- PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization.Development. 2004; 131 (14998931): 1577-1586
- Intravascular heavy chain-modification of hyaluronan during endotoxic shock.Biochem. Biophys. Rep. 2019; 17 (30623115): 114-121
- Presence of the protein–glycosaminoglycan–protein covalent cross-link in the inter-α-inhibitor–related proteinase inhibitor heavy chain 2/bikunin.J. Biol. Chem. 1993; 268 (7682553): 8711-8716
- Chondroitin sulphate covalently cross-links the three polypeptide chains of inter-α-trypsin inhibitor.Eur. J. Biochem. 1994; 221 (7513643): 881-888
- Organization of the inter-α-inhibitor heavy chains on the chondroitin sulfate originating from Ser10 of bikunin: posttranslational modification of IαI-derived bikunin.Biochemistry. 1999; 38 (10512637): 11804-11813
- The proteoglycan bikunin has a defined sequence.Nat. Chem. Biol. 2011; 7 (21983600): 827-833
- Intracellular coupling of the heavy chain of pre-α-inhibitor to chondroitin sulfate.J. Biol. Chem. 2002; 277 (11827976): 13578-13582
- Inter-α-trypsin inhibitor, a covalent protein–glycosaminoglycan–protein complex.J. Biol. Chem. 2004; 279 (15151994): 38079-38082
- V Chondroitin 4-sulfate covalently cross-links the chains of the human blood protein pre-α-inhibitor.J. Biol. Chem. 1991; 266 (1898736): 747-751
- Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)–mediated interactions with the inter-α-inhibitor heavy chain 5 facilitate tumor growth factor β1 (TGFβ1)–dependent fibroblast to myofibroblast differentiation.J. Biol. Chem. 2016; 291 (27143355): 13789-13801
- Molecular heterogeneity of the SHAP–hyaluronan complex: Isolation and characterization of the complex in synovial fluid from patients with rheumatoid arthritis.J. Biol. Chem. 2003; 278 (12799384): 32710-32718
- Evidence for the covalent binding of SHAP, heavy chains of inter-α-trypsin inhibitor, to hyaluronan.J. Biol. Chem. 1995; 270 (7592891): 26657-26663
- SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum.J. Biol. Chem. 2006; 281 (16702221): 20303-20314
- Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking.J. Biol. Chem. 2014; 289 (25190808): 30481-30498
- Constitutive expression of inter-α-inhibitor (IαI) family proteins and tumor necrosis factor-stimulated gene-6 (TSG-6) by human amniotic membrane epithelial and stromal cells supporting formation of the heavy chain-hyaluronan (HC-HA) complex.J. Biol. Chem. 2012; 287 (22351758): 12433-12444
- Heavy chain-hyaluronan/pentraxin 3 from amniotic membrane suppresses inflammation and scarring in murine lacrimal gland and conjunctiva of chronic graft-versus-host disease.Sci. Rep. 2017; 7 (28165063): 42195
- Inter-α-inhibitor ameliorates endothelial inflammation in sepsis.Lung. 2019; 197 (31028466): 361-369
- Inter-α inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production.Blood Adv. 2018; 2 (30093530): 1923-1934
- Inter-α-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding.J. Biol. Chem. 2009; 284 (19395377): 16922-16930
- Inter-α-trypsin inhibitor attenuates complement activation and complement-induced lung injury.J. Immunol. 2007; 179 (17785858): 4187-4192
- Heavy chains of inter α inhibitor (IαI) inhibit the human complement system at early stages of the cascade.J. Biol. Chem. 2012; 287 (22528482): 20100-20110
- Vitronectin in vascular context: facets of a multitalented matricellular protein.Semin. Thromb. Hemost. 2011; 37 (21805447): 408-424
- Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15079089): 6367-6372
- The structure of tumor endothelial marker 8 (TEM8) extracellular domain and implications for its receptor function for recognizing anthrax toxin.PLoS One. 2010; 5 (20585457): e11203
- The receptors that mediate the direct lethality of anthrax toxin.Toxins (Basel). 2012; 5 (23271637): 1-8
- Complement in disease: a defence system turning offensive.Nat. Rev. Nephrol. 2016; 12 (27211870): 383-401
- Posttranslational modifications of human inter-α-inhibitor: identification of glycans and disulfide bridges in heavy chains 1 and 2.Biochemistry. 1998; 37 (9425062): 408-416
- Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4.Acta Crystallogr. D Biol. Crystallogr. 2015; 71 (25849406): 969-985
- Structural basis of integrin regulation and signaling.Annu. Rev. Immunol. 2007; 25 (17201681): 619-647
- A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding.J. Biol. Chem. 2017; 292 (29079572): 20756-20768
- The compact and biologically relevant structure of inter-α-inhibitor is maintained by the chondroitin sulfate chain and divalent cations.J. Biol. Chem. 2016; 291 (26728454): 4658-4670
- The crystal structure of bikunin from the inter-α-inhibitor complex: a serine protease inhibitor with two kunitz domains.J. Mol. Biol. 1998; 276 (9566199): 955-966
- Complement factor H in host defense and immune evasion.Cell Mol. Life Sci. 2017; 74 (27942748): 1605-1624
- Structures of C3b in complex with factors B and D give insight into complement convertase formation.Science. 2010; 330 (21205667): 1816-1820
- Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1.J. Cell Biol. 2004; 165 (15184403): 723-734
- Latent TGF-β structure and activation.Nature. 2011; 474 (21677751): 343-349
- Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell–mediated inflammation.Immunity. 2015; 42 (25979421): 903-915
- Latent TGF-β–binding proteins.Matrix Biol. 2015; 47 (25960419): 44-53
- Fibrillin-1 microfibril deposition is dependent on fibronectin assembly.J. Cell Sci. 2008; 121 (18653538): 2696-2704
- Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44.Mol. Cell. 2004; 13 (14992719): 483-496
- Thrombin cleavage of inter-α-inhibitor heavy chain 1 regulates leukocyte binding to an inflammatory hyaluronan matrix.J. Biol. Chem. 2016; 291 (27679489): 24324-24334
- Inter-α inhibitor proteins: a novel therapeutic strategy for experimental anthrax infection.Shock. 2011; 35 (20523269): 42-44
- Inter-α inhibitor protein administration improves survival from neonatal sepsis in mice.Pediatr. Res. 2010; 68 (20520583): 242-247
- Inter-α-inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication.Infect. Immun. 2005; 73 (16041026): 5101-5105
- The single-molecule mechanics of the latent TGF-β1 momplex.Curr. Biol. 2011; 21 (22169532): 2046-2054
- Inter-α-inhibitor impairs TSG-6–induced hyaluronan cross-linking.J. Biol. Chem. 2013; 288 (24005673): 29642-29653
- Independent multimerization of latent TGFβ binding protein-1 stabilized by cross-linking and enhanced by heparan sulfate.Sci. Rep. 2016; 6 (27677855): 34347
- Diffraction-geometry refinement in the DIALS framework.Acta Crystallogr. D Struct. Biol. 2016; 72 (27050135): 558-575
- An introduction to data reduction: space-group determination, scaling and intensity statistics.Acta Crystallogr. D. Biol. Crystallogr. 2011; 67 (21460446): 282-292
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16369096): 72-82
- How good are my data and what is the resolution?.Acta Crystallogr. D Biol. Crystallogr. 2013; 69 (23793146): 1204-1214
- Decision making in xia2.Acta Crystallogr. D. Biol. Crystallogr. 2013; 69 (23793152): 1260-1273
- Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard.Acta Crystallogr. D Biol. Crystallogr. 2009; 65 (19465773): 582-601
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Towards automated crystallographic structure refinement with phenix.refine.Acta Crystallogr. D Biol. Crystallogr. 2012; 68 (22505256): 352-367
- Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 Beamline (PETRA III, DESY).J. Appl. Crystallogr. 2015; 48 (25844078): 431-443
- PRIMUS: a Windows PC-based system for small-angle scattering data analysis.J. Appl. Crystallogr. 2003; 36: 1277-1282
- Determination of the regularization parameter in indirect-transform methods using perceptual criteria.J. Appl. Crystallogr. 1992; 25: 495-503
- ATSAS 2.1: towards automated and web-supported small-angle scattering data analysis.J. Appl. Crystallogr. 2007; 40: s223-s228
- DAMMIF, a program for rapidv ab-initio shape determination in small-angle scattering.J. Appl. Crystallogr. 2009; 42 (27630371): 342-346
- Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing.Biophys. J. 1999; 76 (10354416): 2879-2886
- Structure-based model of allostery predicts coupling between distant sites.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22403063): 4875-4880
- Resolution of ab initio shapes determined from small-angle scattering.IUCrJ. 2016; 3 (27840683): 440-447
- The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc. 2015; 10 (25950237): 845-858
- Multi-scale visualization of molecular architecture using real-time ambient occlusion in Sculptor.PLoS Comput. Biol. 2015; 11 (26505203): e1004516
- ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules.Methods Enzymol. 2011; 487 (21187238): 545-574
- Structures of complement component C3 provide insights into the function and evolution of immunity.Nature. 2005; 437 (16177781): 505-511
- Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.Biophys. J. 2000; 78 (10692345): 1606-1619
- Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.Protein Sci. 2007; 16 (17192587): 30-42
- GAG Builder: a web-tool for modeling 3D structures of glycosaminoglycans.Glycobiology. 2019; 29 (31034567): 515-518
- Accurate assessment of mass, models and resolution by small-angle scattering.Nature. 2013; 496 (23619693): 477-481
Article info
Publication history
Footnotes
This work was supported by Versus Arthritis Grants 18472 and 19489, Medical Research Council Grant K004441, and a Biotechnology and Biological Sciences Research Council Collaborative Awards in Science and Engineering Studentship sponsored by Farfield Group Ltd. (to H. L. B.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S8.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy