Introduction
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- Rhead B.
- Brorson I.S.
- Berge T.
- Adams C.
- Quach H.
- Moen S.M.
- Berg-Hansen P.
- Celius E.G.
- Sangurdekar D.P.
- Bronson P.G.
- Lea R.A.
- Burnard S.
- Maltby V.E.
- Scott R.J.
- Lechner-Scott J.
- Harbo H.F.
- Bos S.D.
- Barcellos L.F.
Results
PDE3A- and SLFN12-expressing cell lines exhibit a gradient of sensitivity to DNMDP
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
![]() |
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.




- Rhead B.
- Brorson I.S.
- Berge T.
- Adams C.
- Quach H.
- Moen S.M.
- Berg-Hansen P.
- Celius E.G.
- Sangurdekar D.P.
- Bronson P.G.
- Lea R.A.
- Burnard S.
- Maltby V.E.
- Scott R.J.
- Lechner-Scott J.
- Harbo H.F.
- Bos S.D.
- Barcellos L.F.

PDE3B can also mediate DNMDP sensitivity

The PDE3A catalytic domain is sufficient to confer DNMDP sensitivity
- Shakur Y.
- Takeda K.
- Kenan Y.
- Yu Z.X.
- Rena G.
- Brandt D.
- Houslay M.D.
- Degerman E.
- Ferrans V.J.
- Manganiello V.C.
- Ahmad F.
- Shen W.
- Vandeput F.
- Szabo-Fresnais N.
- Krall J.
- Degerman E.
- Goetz F.
- Klussmann E.
- Movsesian M.
- Manganiello V.

- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.

- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
A genome-wide CRISPR knockout screen for resistance to DNMDP uncovers AIP

Discussion
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- Fryknäs M.
- Rickardson L.
- Wickström M.
- Dhar S.
- Lövborg H.
- Gullbo J.
- Nygren P.
- Gustafsson M.G.
- Isaksson A.
- Larsson R.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
Experimental procedures
Cell culture and viability assays
Single-cell fate mapping
Cell lysis and immunoblotting
RNA extraction and real-time quantitative RT-PCR
cDNA ectopic expression
Assay for SLFN12 Phe-185 frameshift mutation status in cell lines
CRISPR knockout
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
Site-directed mutagenesis
Linker resin pulldown
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
- de Waal L.
- Lewis T.A.
- Rees M.G.
- Tsherniak A.
- Wu X.
- Choi P.S.
- Gechijian L.
- Hartigan C.
- Faloon P.W.
- Hickey M.J.
- Tolliday N.
- Carr S.A.
- Clemons P.A.
- Munoz B.
- Wagner B.K.
- Shamji A.F.
- Koehler A.N.
- Schenone M.
- Burgin A.B.
- Schreiber S.L.
- Greulich H.
- Meyerson M.
Genome-wide CRISPR screen
Transient transfection and immunoprecipitation
Author contributions
Acknowledgments
Supplementary Material
References
- Cancer statistics, 2018.CA Cancer J. Clin. 2018; 68 (29313949): 7-30
- Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics.Nat. Chem. Biol. 2016; 12 (26656089): 102-108
- Advances in targeting cyclic nucleotide phosphodiesterases.Nat. Rev. Drug Discov. 2014; 13 (24687066): 290-314
- cUMP hydrolysis by PDE3A.Naunyn Schmiedebergs Arch. Pharmacol. 2017; 390 (27975297): 269-280
- Schlafen 12 interaction with SerpinB12 and deubiquitylases drives human enterocyte differentiation.Cell Physiol. Biochem. 2018; 48 (30045019): 1274-1290
- Schlafen 12 expression modulates prostate cancer cell differentiation.J. Surg. Res. 2014; 190 (24768141): 177-184
- The soluble cytoplasmic tail of CD45 (ct-CD45) in human plasma contributes to keep T cells in a quiescent state.Eur. J. Immunol. 2017; 47 (27718235): 193-205
- Increased DNA methylation of SLFN12 in CD4+ and CD8+ T cells from multiple sclerosis patients.PLoS ONE. 2018; 13 (30379917): e0206511
- The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.Nature. 2012; 483 (22460905): 603-607
- Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N. Engl. J. Med. 2001; 344 (11248153): 783-792
- Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms.J. Biol. Chem. 2000; 275 (10766874): 12331-12338
- Overview of PDEs and their regulation.Circ. Res. 2007; 100 (17307970): 309-327
- Membrane localization of cyclic nucleotide phosphodiesterase 3 (PDE3). Two N-terminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum.J. Biol. Chem. 2000; 275 (10952971): 38749-38761
- Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium.J. Biol. Chem. 2005; 280 (16172121): 39168-39174
- Protein kinase C-mediated phosphorylation and activation of PDE3A regulate cAMP levels in human platelets.J. Biol. Chem. 2009; 284 (19261611): 12339-12348
- Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2.J. Biol. Chem. 2015; 290 (25593322): 6763-6776
- Selective regulation of cyclic nucleotide phosphodiesterase PDE3A isoforms.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (24248367): 19778-19783
- Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes.J. Biol. Chem. 2002; 277 (12154085): 38072-38078
- Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A.Blood. 2007; 110 (17392505): 1475-1482
- Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity.Biochemistry. 2004; 43 (15147193): 6091-6100
- New insights from the structure-function analysis of the catalytic region of human platelet phosphodiesterase 3A: a role for the unique 44-amino acid insert.J. Biol. Chem. 2006; 281 (16873361): 29236-29244
- AIP and its interacting partners.J. Endocrinol. 2011; 210 (21454441): 137-155
- Rapid proteasomal degradation of mutant proteins is the primary mechanism leading to tumorigenesis in patients with missense AIP mutations.J. Clin. Endocrinol. Metab. 2016; 101 (27253664): 3144-3154
- Cytotoxicity of zardaverine in embryonal rhabdomyosarcoma from a Costello syndrome patient.Front. Oncol. 2017; 7 (28421158): 42
- Phenotype-based screening of mechanistically annotated compounds in combination with gene expression and pathway analysis identifies candidate drug targets in a human squamous carcinoma cell model.J. Biomol. Screen. 2006; 11 (16928983): 457-468
- Targeting tumor cells based on phosphodiesterase 3A expression.Exp. Cell Res. 2017; 361 (29107068): 308-315
- Anagrelide for gastrointestinal stromal tumor.Clin. Cancer Res. 2018; 25 (30530703): 1676-1687
- Phosphodiesterase 3/4 inhibitor zardaverine exhibits potent and selective antitumor activity against hepatocellular carcinoma both in vitro in vivo independently of phosphodiesterase inhibition.PLoS ONE. 2014; 9 (24598942): e90627
- PDE3A inhibitor anagrelide activates death signaling pathway genes and synergizes with cell death-inducing cytokines to selectively inhibit cancer cell growth.Am. J. Cancer Res. 2019; 9 (31598394): 1905-1921
- Phosphodiesterase 3A: a new player in development of interstitial cells of Cajal and a prospective target in gastrointestinal stromal tumors (GIST).Oncotarget. 2017; 8 (28454120): 41026-41043
- Estrogen-related hormones induce apoptosis by stabilizing schlafen-12 protein turnover.Mol. Cell. 2019; 75 (31420216): 1103-1116.e9
- A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system.Nucleic Acids Res. 2005; 33 (16009811): e109
- Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities.Nat. Commun. 2018; 9 (30575746): 5416
- The growth of bacteriophage.J. Gen. Physiol. 1939; 22 (19873108): 365-384
- CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering.Nucleic Acids Res. 2016; 44 (27185894): W272-W276
- CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing.Nucleic Acids Res. 2014; 42 (24861617): W401-W407
Article info
Publication history
Footnotes
This work was supported by a Broad Institute Next Generation Fund award (to H. G.). Several authors on this study received funding from Bayer AG (X. W., G. R. S., G. F. G., A. R. B., B. K., L. W., T. A. L., C. W. G., A. D. C., M. M., and H. G.) and are co-inventors on patent applications submitted with Bayer AG (X. W., T. A. L., M. M., and H. G.).
This article contains Tables S1 and S2, Figs. S1–S3, and Data sets S1 and S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Correction: Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12.Journal of Biological ChemistryVol. 295Issue 48Open Access