Introduction
- Allen T.W.
- Bradley C.A.
- Sisson A.J.
- Byamukama E.
- Chilvers M.I.
- Coker C.M.
- Collins A.A.
- Damicone J.P.
- Dorrance A.E.
- Dufault N.S.
- Esker P.E.
- Faske T.R.
- Giesler L.J.
- Grybauskas A.P.
- Hershman D.E.
- et al.
- Chitnumsub P.
- Jaruwat A.
- Riangrungroj P.
- Ittarat W.
- Noytanom K.
- Oonanant W.
- Vanichthanankul J.
- Chuankhayan P.
- Maenpuen S.
- Chen C.J.
- Chaiyen P.
- Yuthavong Y.
- Leartsakulpanich U.
- Schwertz G.
- Frei M.S.
- Witschel M.C.
- Rottmann M.
- Leartsakulpanich U.
- Chitnumsub P.
- Jaruwat A.
- Ittarat W.
- Schäfer A.
- Aponte R.A.
- Trapp N.
- Mark K.
- Chaiyen P.
- Diederich F.
- Schwertz G.
- Witschel M.C.
- Rottmann M.
- Bonnert R.
- Leartsakulpanich U.
- Chitnumsub P.
- Jaruwat A.
- Ittarat W.
- Schäfer A.
- Aponte R.A.
- Charman S.A.
- White K.L.
- Kundu A.
- Sadhukhan S.
- Lloyd M.
- et al.
- Witschel M.C.
- Rottmann M.
- Schwab A.
- Leartsakulpanich U.
- Chitnumsub P.
- Seet M.
- Tonazzi S.
- Schwertz G.
- Stelzer F.
- Mietzner T.
- McNamara C.
- Thater F.
- Freymond C.
- Jaruwat A.
- Pinthong C.
- et al.
- Giardina G.
- Paone A.
- Tramonti A.
- Lucchi R.
- Marani M.
- Magnifico M.C.
- Bouzidi A.
- Pontecorvi V.
- Guiducci G.
- Zamparelli C.
- Rinaldo S.
- Paiardini A.
- Contestabile R.
- Cutruzzolà F.
- Patil G.B.
- Lakhssassi N.
- Wan J.
- Song L.
- Zhou Z.
- Klepadlo M.
- Vuong T.D.
- Stec A.O.
- Kahil S.S.
- Colantonio V.
- Valliyodan B.
- Rice J.H.
- Piya S.
- Hewezi T.
- Stupar R.M.
- et al.

Results
Structural overview of soybean SHMT8
- Giardina G.
- Paone A.
- Tramonti A.
- Lucchi R.
- Marani M.
- Magnifico M.C.
- Bouzidi A.
- Pontecorvi V.
- Guiducci G.
- Zamparelli C.
- Rinaldo S.
- Paiardini A.
- Contestabile R.
- Cutruzzolà F.


The PLP-binding site of soybean SHMT8 is highly conserved with related enzymes

Ternary complex of Essex SHMT8 with FTHF at atomic resolution
- Chitnumsub P.
- Jaruwat A.
- Riangrungroj P.
- Ittarat W.
- Noytanom K.
- Oonanant W.
- Vanichthanankul J.
- Chuankhayan P.
- Maenpuen S.
- Chen C.J.
- Chaiyen P.
- Yuthavong Y.
- Leartsakulpanich U.
- Mehrshahi P.
- Gonzalez-Jorge S.
- Akhtar T.A.
- Ward J.L.
- Santoyo-Castelazo A.
- Marcus S.E.
- Lara-Núñez A.
- Ravanel S.
- Hawkins N.D.
- Beale M.H.
- Barrett D.A.
- Knox J.P.
- Gregory 3rd, J.F.
- Hanson A.D.
- Bennett M.J.
- et al.
The Forrest polymorphic residues flank the entrance of the THF-binding site

Forrest SHMT8 has severely impaired binding affinity for folate
Essex SHMT8 | Forrest SHMT8 | |
---|---|---|
Spectrophotometric FTHF-binding assay | ||
SHMT8·glycine + FTHF (μm) | 17 | ND |
Steady-state kinetics: MTHFD-coupled reaction | ||
kcat (s−1) | 14 ± 3 | ND |
Km,THF (μm) | 30 ± 11 | ND |
Km,Ser (μm) | 240 ± 30 | 1300 ± 200 |
Ki,THF (μm) | 170 ± 70 | |
kcat/Km,THF (mm−1 s−1) | 500 ± 190 | 0.22 ± 0.02 |
Steady-state kinetic parameters: retro-aldol cleavage of l-phenylserine | ||
kcat (s−1) | 1.3 ± 0.1 | 0.93 ± 0.04 |
Km (mm) | 70 ± 10 | 63 ± 5 |
kcat/Km (m−1 s−1) | 18 ± 3.3 | 15 ± 1.3 |
Forrest SHMT8 has a profound defect in MTHF production
- Ubonprasert S.
- Jaroensuk J.
- Pornthanakasem W.
- Kamonsutthipaijit N.
- Wongpituk P.
- Mee-Udorn P.
- Rungrotmongkol T.
- Ketchart O.
- Chitnumsub P.
- Leartsakulpanich U.
- Chaiyen P.
- Maenpuen S.
Discussion
- Giardina G.
- Paone A.
- Tramonti A.
- Lucchi R.
- Marani M.
- Magnifico M.C.
- Bouzidi A.
- Pontecorvi V.
- Guiducci G.
- Zamparelli C.
- Rinaldo S.
- Paiardini A.
- Contestabile R.
- Cutruzzolà F.
- Ubonprasert S.
- Jaroensuk J.
- Pornthanakasem W.
- Kamonsutthipaijit N.
- Wongpituk P.
- Mee-Udorn P.
- Rungrotmongkol T.
- Ketchart O.
- Chitnumsub P.
- Leartsakulpanich U.
- Chaiyen P.
- Maenpuen S.
- Ubonprasert S.
- Jaroensuk J.
- Pornthanakasem W.
- Kamonsutthipaijit N.
- Wongpituk P.
- Mee-Udorn P.
- Rungrotmongkol T.
- Ketchart O.
- Chitnumsub P.
- Leartsakulpanich U.
- Chaiyen P.
- Maenpuen S.
- Ubonprasert S.
- Jaroensuk J.
- Pornthanakasem W.
- Kamonsutthipaijit N.
- Wongpituk P.
- Mee-Udorn P.
- Rungrotmongkol T.
- Ketchart O.
- Chitnumsub P.
- Leartsakulpanich U.
- Chaiyen P.
- Maenpuen S.
Materials and methods
Protein expression and purification
Crystallization of Essex and Forrest SHMT8
X-ray diffraction data collection, phasing, and refinement
Steady-state kinetics for the SHMT two-substrate reactions
Determination of specific activities for the SHMT retro-aldol cleavage reaction
Ligand-binding assays
Data and software availability
Author contributions
Acknowledgments
Supplementary Material
References
- Soybean yield loss estimates due to diseases in the United States and Ontario, Canada from 2010 to 2014.Plant Health Prog. 2017; 18: 19-27
- Increase in soybean cyst nematode virulence and reproduction on resistant soybean varieties in Iowa from 2001 to 2015 and the effects on soybean yields.Plant Health Prog. 2017; 18: 146-155
- Soybean genomics: developments through the use of cultivar “Forrest.”.Int. J. Plant Genomics. 2008; 2008 (18483614): 793158
- Registration of “Forrest” soybeans.Crop Sci. 1973; 13: 287
- Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean.Science. 2012; 338 (23065905): 1206-1209
- A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens.Nature. 2012; 492 (23235880): 256-260
- Soybean cyst nematode resistance emerged via artificial selection of duplicated serine hydroxymethyltransferase genes.Front. Plant Sci. 2016; 7 (27458476): 998
- Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode.Sci. Rep. 2019; 9 (30728404): 1506
- Structures of Plasmodium vivax serine hydroxymethyltransferase: implications for ligand-binding specificity and functional control.Acta Crystallogr. D Biol. Crystallogr. 2014; 70 (25478836): 3177-3186
- Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition.FEBS J. 2014; 281 (24698160): 2570-2583
- Conformational aspects in the design of inhibitors for serine hydroxymethyltransferase (SHMT): biphenyl, aryl sulfonamide, and aryl sulfone motifs.Chemistry. 2017; 23 (28967982): 14345-14357
- Antimalarial inhibitors targeting serine hydroxymethyltransferase (SHMT) with in vivo efficacy and analysis of their binding mode based on X-ray cocrystal structures.J. Med. Chem. 2017; 60 (28537728): 4840-4860
- Potent inhibitors of plasmodial serine hydroxymethyltransferase (SHMT) featuring a spirocyclic scaffold.Chem. Med. Chem. 2018; 13 (29655285): 931-943
- Plasmodium serine hydroxymethyltransferase as a potential anti-malarial target: inhibition studies using improved methods for enzyme production and assay.Malar. J. 2012; 11 (22691309): 194
- Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities.J. Med. Chem. 2015; 58 (25785478): 3117-3130
- Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (29073064): 11404-11409
- The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells.FEBS J. 2018; 285 (30035852): 3238-3253
- Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.Science. 2012; 336 (22628656): 1040-1044
- SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation.Cell Death Dis. 2014; 5 (25412303): e1525
- Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode.Plant Biotechnol. J. 2019; 17 (30688400): 1595-1611
- The activation and suppression of plant innate immunity by parasitic nematodes.Annu. Rev. Phytopathol. 2014; 52 (24906126): 243-265
- A fully automatic evolutionary classification of protein folds: DALI domain dictionary version 3.Nucleic Acids Res. 2001; 29 (11125048): 55-57
- Chloroplastic serine hydroxymethyltransferase from Medicago truncatula: a structural characterization.Front. Plant Sci. 2018; 9 (29868052): 584
- Purification and characterization of pyridoxal 5′-phosphate dependent serine hydroxymethylase from lamb liver and its action upon beta-phenylserines.Biochemistry. 1977; 16 (921936): 5342-5350
- Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.J. Mol. Biol. 2000; 296 (10656824): 155-168
- Role of tyrosine 65 in the mechanism of serine hydroxymethyltransferase.Biochemistry. 2000; 39 (10858298): 7492-7500
- Structure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers.Biochemistry. 2000; 39 (11063567): 13313-13323
- Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism.J. Biol. Chem. 2002; 277 (11877399): 17161-17169
- Location of the pteroylpolyglutamate-binding site on rabbit cytosolic serine hydroxymethyltransferase.J. Biol. Chem. 2003; 278 (12438316): 2645-2653
- Structural and functional studies of Bacillus stearothermophilus serine hydroxymethyltransferase: the role of Asn341, Tyr60 and Phe351 in tetrahydrofolate binding.Biochem. J. 2009; 418 (19046138): 635-642
- Structural basis of methotrexate and pemetrexed action on serine hydroxymethyltransferases revealed using plant models.Sci. Rep. 2019; 9 (31873125): 19614
- Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development.Plant J. 2010; 64 (21070407): 267-279
- Folate polyglutamylation eliminates dependence of activity on enzyme concentration in mitochondrial serine hydroxymethyltransferases from Arabidopsis thaliana.Arch. Biochem. Biophys. 2013; 536 (23800877): 87-96
- Graphical determination of the dissociation constants for two-substrate enzyme systems.Biochim. Biophys. Acta. 1957; 25 (13479429): 575-578
- A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release.J. Biol. Chem. 2019; 294 (31118236): 10490-10502
- Human cytosolic and mitochondrial serine hydroxymethyltransferase isoforms in comparison: full kinetic characterization and substrate inhibition properties.Biochemistry. 2018; 57 (30500180): 6984-6996
- XDS. XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- How good are my data and what is the resolution?.Acta Crystallogr. D Biol. Crystallogr. 2013; 69 (23793146): 1204-1214
- Integration, scaling, space-group assignment and post-refinement.Acta Crystallogr D Biol. Crystallogr. 2010; 66 (20124693): 133-144
- Automated structure solution with the PHENIX suite.Methods Mol. Biol. 2008; 426 (18542881): 419-435
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Coot: model-building tools for molecular graphics.Acta Cryst. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Impact of mutating the key residues of a bifunctional 5,10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Escherichia coli on its activities.Biochemistry. 2015; 54 (25988590): 3504-3513
- Mechanism for folate-independent aldolase reaction catalyzed by serine hydroxymethyltransferase.FEBS J. 2012; 279 (22141341): 504-514
- Serine transhydroxymethylase: affinity of tetrahydrofolate compounds for the enzyme and enzyme-glycine complex.Biochemistry. 1967; 6 (6030322): 253-257
- Design strategy for serine hydroxymethyltransferase probes based on retro-aldol-type reaction.Nat. Commun. 2019; 10 (30787298): 876
Article info
Publication history
Footnotes
This work was supported by Grant 9 P41 GM103622 from the NIGMS, National Institutes of Health. This work was also supported by National Institute of Food and Agriculture Award 2019-67012-29653 from the U.S. Department of Agriculture National Institute of Food and Agriculture (to D. A. K.), the Missouri Soybean Mercchanising Council Project 258 (to M. G. M.), and by a seed grant from the University of Missouri Bond Life Sciences Center (to M. G. M., J. J. T., and L. J. B.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains supporting text, Tables S1–S3, and Figs. S1–S5.
The atomic coordinates and structure factors (codes 6UXH, 6UXI, 6UXJ, 6UXK, and 6UXL) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy