Introduction
- Gill S.R.
- Fouts D.E.
- Archer G.L.
- Mongodin E.F.
- Deboy R.T.
- Ravel J.
- Paulsen I.T.
- Kolonay J.F.
- Brinkac L.
- Beanan M.
- Dodson R.J.
- Daugherty S.C.
- Madupu R.
- Angiuoli S.V.
- Durkin A.S.
- et al.
- Rohde H.
- Burandt E.C.
- Siemssen N.
- Frommelt L.
- Burdelski C.
- Wurster S.
- Scherpe S.
- Davies A.P.
- Harris L.G.
- Horstkotte M.A.
- Knobloch J.K.
- Ragunath C.
- Kaplan J.B.
- Mack D.
- Rohde H.
- Burandt E.C.
- Siemssen N.
- Frommelt L.
- Burdelski C.
- Wurster S.
- Scherpe S.
- Davies A.P.
- Harris L.G.
- Horstkotte M.A.
- Knobloch J.K.
- Ragunath C.
- Kaplan J.B.
- Mack D.

Results
Solution characterization of tandem B-repeats from Aap
Tandem B-repeats assemble into multiple higher-order species in the presence of Zn2+

2D size–and–shape sedimentation analysis indicates formation of fiber-like species

Tandem B-repeats form amyloid fibers in the presence of Zn2+

- Kayed R.
- Head E.
- Sarsoza F.
- Saing T.
- Cotman C.W.
- Necula M.
- Margol L.
- Wu J.
- Breydo L.
- Thompson J.L.
- Rasool S.
- Gurlo T.
- Butler P.
- Glabe C.G.
- Kayed R.
- Head E.
- Sarsoza F.
- Saing T.
- Cotman C.W.
- Necula M.
- Margol L.
- Wu J.
- Breydo L.
- Thompson J.L.
- Rasool S.
- Gurlo T.
- Butler P.
- Glabe C.G.
B-repeat fiber assembly is time- and temperature-dependent

B-repeat fibers are resistant to acid and chelator treatment
Amyloid fibers are structural components in S. epidermidis biofilms
- Rohde H.
- Burandt E.C.
- Siemssen N.
- Frommelt L.
- Burdelski C.
- Wurster S.
- Scherpe S.
- Davies A.P.
- Harris L.G.
- Horstkotte M.A.
- Knobloch J.K.
- Ragunath C.
- Kaplan J.B.
- Mack D.

S. epidermidis amyloid fibers are composed of processed Aap
Amyloid fibers form early in biofilm formation and correlate with DTPA resistance of biofilms

Discussion
- Rohde H.
- Burandt E.C.
- Siemssen N.
- Frommelt L.
- Burdelski C.
- Wurster S.
- Scherpe S.
- Davies A.P.
- Harris L.G.
- Horstkotte M.A.
- Knobloch J.K.
- Ragunath C.
- Kaplan J.B.
- Mack D.
Materials and methods
Bacterial strains and media
Expression construct generation
- Gill S.R.
- Fouts D.E.
- Archer G.L.
- Mongodin E.F.
- Deboy R.T.
- Ravel J.
- Paulsen I.T.
- Kolonay J.F.
- Brinkac L.
- Beanan M.
- Dodson R.J.
- Daugherty S.C.
- Madupu R.
- Angiuoli S.V.
- Durkin A.S.
- et al.
- Gill S.R.
- Fouts D.E.
- Archer G.L.
- Mongodin E.F.
- Deboy R.T.
- Ravel J.
- Paulsen I.T.
- Kolonay J.F.
- Brinkac L.
- Beanan M.
- Dodson R.J.
- Daugherty S.C.
- Madupu R.
- Angiuoli S.V.
- Durkin A.S.
- et al.
- Gill S.R.
- Fouts D.E.
- Archer G.L.
- Mongodin E.F.
- Deboy R.T.
- Ravel J.
- Paulsen I.T.
- Kolonay J.F.
- Brinkac L.
- Beanan M.
- Dodson R.J.
- Daugherty S.C.
- Madupu R.
- Angiuoli S.V.
- Durkin A.S.
- et al.
Protein expression and purification
CD
Analytical ultracentrifugation
Transmission EM
Harvesting biofilms
Thioflavin T protein fluorescence assay
HPLC assays
Turbidity assays
Dynamic light scattering
Confocal microscopy
Biofilm formation assay
Mass spectrometry
Author contributions
Acknowledgments
Supplementary Material
References
- Foreign body infections due to Staphylococcus epidermidis.Ann. Med. 2009; 41 (18720093): 109-119
- National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004.Am. J. Infect. Control. 2004; 32 (15573054): 470-485
- Current concepts in biofilm formation of Staphylococcus epidermidis.Future Microbiol. 2010; 5 (20521936): 917-933
- Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.Clin. Infect. Dis. 2004; 39 (15306996): 309-317
- Coagulase-negative staphylococcal infections.Infect. Dis. Clin. North Am. 2009; 23 (19135917): 73-98
- Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?.Curr. Opin. Microbiol. 2010; 13 (20884280): 610-615
- Pathogenesis of infections due to coagulase-negative staphylococci.Lancet Infect. Dis. 2002; 2 (12409048): 677-685
- Staphylococcus epidermidis–the ’accidental’ pathogen.Nat. Rev. Microbiol. 2009; 7 (19609257): 555-567
- Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing.J. Infect. Dis. 2008; 197 (18419540): 1028-1035
- Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.J. Bacteriol. 2005; 187 (15774886): 2426-2438
- Bacterial biofilms: a common cause of persistent infections.Science. 1999; 284 (10334980): 1318-1322
- Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A.Infect. Immun. 2005; 73 (15845508): 3007-3017
- Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus Staphylococcus epidermidis biofilms.Appl. Environ. Microbiol. 2008; 74 (18039822): 470-476
- Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin.J. Infect. Dis. 1996; 174 (8843236): 881-884
- Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis Staphylococcus aureus isolated from prosthetic hip and knee joint infections.Biomaterials. 2007; 28 (17187854): 1711-1720
- A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces.Infect. Immun. 1997; 65 (9009307): 519-524
- Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein.Clin. Diagn. Lab. Immunol. 2005; 12 (15642991): 93-100
- Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases.Mol. Microbiol. 2005; 55 (15752207): 1883-1895
- The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation.Microbiology. 2007; 153 (17660408): 2435-2446
- Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin.FEMS Microbiol. Lett. 2006; 255 (16436056): 11-16
- Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections.FEMS Immunol. Med. Microbiol. 2010; 59 (20528930): 280-291
- Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model.Infect. Immun. 2015; 83 (25332125): 214-226
- The proline/glycine-rich region of the biofilm adhesion protein Aap forms an extended stalk that resists compaction.J. Mol. Biol. 2017; 429 (27890783): 261-279
- The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis.Mol. Microbiol. 2017; 103 (27997732): 860-874
- A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (19047636): 19456-19461
- Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23277549): E202-E211
- Defining the metal specificity of a multifunctional biofilm adhesion protein.Protein Sci. 2017; 26 (28707417): 1964-1973
- Role of surface protein SasG in biofilm formation by Staphylococcus aureus.J. Bacteriol. 2010; 192 (20817770): 5663-5673
- Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (26715750): 410-415
- Functional consequences of B-repeat sequence variation in the staphylococcal biofilm protein Aap: deciphering the assembly code.Biochem. J. 2017; 474 (27872164): 427-443
- The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis.J. Biol. Chem. 1991; 266 (2002054): 5202-5219
- Thermodynamic analysis of metal ion-induced protein assembly.Methods Enzymol. 2011; 488 (21195226): 101-121
- Macromolecular size–and–shape distributions by sedimentation velocity analytical ultracentrifugation.Biophys. J. 2006; 90 (16565040): 4651-4661
- Elucidating complicated assembling systems in biology using size–and–shape analysis of sedimentation velocity data.Methods Enzymol. 2015; 562 (26412652): 187-204
- The structure of amyloid fibrils by electron microscopy and X-ray diffraction.Adv. Protein Chem. 1997; 50 (9338080): 123-159
- The tubular sheaths encasing Methanosaeta thermophila filaments are functional amyloids.J. Biol. Chem. 2015; 290 (26109065): 20590-20600
- Functional amyloid–from bacteria to humans.Trends Biochem. Sci. 2007; 32 (17412596): 217-224
- Role of Escherichia coli curli operons in directing amyloid fiber formation.Science. 2002; 295 (11823641): 851-855
- Amyloid adhesins are abundant in natural biofilms.Environ. Microbiol. 2007; 9 (17991035): 3077-3090
- Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20080671): 2230-2234
- Functional amyloid in Pseudomonas.Mol. Microbiol. 2010; 77 (20572935): 1009-1020
- Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution.Protein Sci. 1993; 2 (8453378): 404-410
- Protein-induced photophysical changes to the amyloid indicator dye thioflavin T.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20826442): 16863-16868
- Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis.J. Bacteriol. 1991; 173 (1677357): 4773-4781
- Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans.J. Biol. Chem. 2015; 290 (25538238): 4953-4965
- Aβ(1–40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated.J. Mol. Biol. 2010; 401 (20600131): 503-517
- A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems.Eur. J. Med. Chem. 2016; 121 (26608003): 785-792
- Optical properties of amyloid stained by Congo red: history and mechanisms.Micron. 2009; 40 (19019688): 285-301
- Staphylococcal biofilm-forming protein has a contiguous rod-like structure.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22493247): E1011-E1018
- The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting.J. Mol. Biol. 2006; 355 (16321400): 501-523
- The effect of osmolytes on protein fibrillation.Int. J. Mol. Sci. 2012; 13 (22489184): 3801-3819
- Fibril specific, conformation-dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers.Mol. Neurodegener. 2007; 2 (17897471): 18
- Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-β(1–42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.J. Neurochem. 2009; 110 (19619132): 1784-1795
- Rapid induction of Alzheimer Aβ amyloid formation by zinc.Science. 1994; 265 (8073293): 1464-1467
- Metals and Alzheimer's disease.J. Alzheimers Dis. 2006; 10 (17119284): 145-163
- Copper and zinc binding to amyloid-β: coordination, dynamics, aggregation, reactivity and metal-ion transfer.Chembiochem. 2009; 10 (19877000): 2837-2845
- The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization.Proc. Natl. Acad. Sci. U.S.A. 2007; 104 (17636121): 12494-12499
- An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.Mol. Microbiol. 2011; 80 (21477127): 1155-1168
- Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals.PLoS Pathog. 2016; 12 (27327765): e1005711
- Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay.Methods Enzymol. 2006; 413 (17046390): 34-74
- Measurement of amyloid formation by turbidity assay-seeing through the cloud.Biophys. Rev. 2016; 8 (28003859): 445-471
- Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates.J. Mol. Biol. 2005; 351 (16024042): 910-922
- Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are composed of the accumulation-associated protein.J. Bacteriol. 2007; 189 (17277069): 2793-2804
- The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes.J. Bacteriol. 2009; 191 (19749046): 7007-7016
- Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23431180): 3841-3846
- Fluorescent stains, with special reference to amyloid and connective tissues.Arch. Pathol. 1959; 68 (13841452): 487-498
- Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1.Anal. Biochem. 1989; 177 (2729542): 244-249
- Molecular mechanism of thioflavin-T binding to amyloid fibrils.Biochim. Biophys. Acta. 2010; 1804 (20399286): 1405-1412
- Polyanion induced circular dichroism of thioflavin T.Gen. Physiol. Biophys. 2013; 32 (23479447): 215-219
- Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19131513): 900-905
- Modulating amyloid self-assembly and fibril morphology with Zn(II).J. Am. Chem. Soc. 2006; 128 (16536526): 3540-3542
- Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein(1–28).J. Biol. Inorg. Chem. 2009; 14 (19083027): 449-455
- Spontaneous generation of mammalian prions.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20660771): 14402-14406
- Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126.Biochemistry. 2001; 40 (11434776): 8073-8084
- A regulatable switch mediates self-association in an immunoglobulin fold.Nat. Struct. Mol. Biol. 2008; 15 (19172750): 965-971
- Formation of a copper specific binding site in non-native states of β2-microglobulin.Biochemistry. 2002; 41 (12186550): 10646-10656
- Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?.Microbiology. 2005; 151 (16000737): 2465-2475
- Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis.Protein Pept. Lett. 2014; 21 (24354773): 75-79
- Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms.J. Biol. Chem. 2018; 293 (30049797): 14296-14311
- An 18-kDa scaffold protein is critical for Staphylococcus epidermidis biofilm formation.PLoS Pathog. 2015; 11 (25799153): e1004735
- Amyloid–a state in many guises: survival of the fittest fibril fold.Protein Sci. 2008; 17 (18042680): 2-10
- Structure of the cross-β spine of amyloid-like fibrils.Nature. 2005; 435 (15944695): 773-778
- The functional curli amyloid is not based on in-register parallel β-sheet structure.J. Biol. Chem. 2009; 284 (19574225): 25065-25076
- Glucagon fibril polymorphism reflects differences in protofilament backbone structure.J. Mol. Biol. 2010; 397 (20156459): 932-946
- From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins and peptides using fibre diffraction.Chem. Soc. Rev. 2010; 39 (20668734): 3445-3453
- Interprotofilament interactions between Alzheimer’s Aβ1–42 peptides in amyloid fibrils revealed by cryoEM.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19264960): 4653-4658
- Structure and texture of fibrous crystals formed by Alzheimer’s Aβ(11–25) peptide fragment.Structure. 2003; 11 (12906823): 915-926
- Atomic structures of amyloid cross-β spines reveal varied steric zippers.Nature. 2007; 447 (17468747): 453-457
- Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics.J. Am. Chem. Soc. 2011; 133 (21473620): 6736-6744
- Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils.Biophys. J. 2003; 84 (12668464): 2562-2569
- Sedimentation velocity analysis of amyloid fibrils.Methods Mol. Biol. 2011; 752 (21713638): 179-196
- Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry–mass spectrometry.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20351246): 6794-6798
- Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining.J. Mol. Biol. 2008; 376 (18206908): 1116-1129
- Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils.J. Mol. Biol. 2010; 399 (20433849): 731-740
- Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation.Biochemistry. 1998; 37 (9922152): 17851-17864
- Boundary analysis of sedimentation-velocity experiments with monodisperse and paucidisperse solutes.Biopolymers. 1978; 17: 1387-1403
- Sedimentation velocity analysis of highly heterogeneous systems.Anal. Biochem. 2004; 335 (15556567): 279-288
- Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing.Methods Enzymol. 2009; 454 (19216924): 87-113
- Modulation of aggregate size- and shape-distributions of the amyloid-β peptide by a designed β-sheet breaker.Eur. Biophys. J. 2010; 39 (19238376): 415-422
- DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data.Nucleic Acids Res. 2004; 32 (15215473): W668-W673
- Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems.Biophys. J. 2002; 82 (11806949): 1096-1111
- Harding S. Rowe A. Computer Aided Interpretation of Analytical Sedimentation Data for Proteins. 1992: 90-125 (In Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry Cambridge, UK)
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health NIGMS Grant R01 GM094363 (to A. B. H.) and NIAID Grant U19 AI070235 (to A. B. H.), by Cincinnati Children's Hospital Research Foundation (to A. B. H.), and in part by the National Institutes of Health Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (to P. S.). A. B. H. serves as a Scientific Advisory Board member for Hoth Therapeutics, Inc., holds equity in Hoth Therapeutics and Chelexa BioSciences, LLC, and was a co-inventor on three patents broadly related to the subject matter of this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Figs. S1–S8 and Tables S1–S4.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy