Results
Two-dimensional (2D) 13C-13C and 1H-13C experiments reveal sterol esters, triglycerides, and polyisoprenoids as the major lipid constituents in melanin ghosts

Melanin ghosts, melanized whole cells, and nonmelanized whole cells contain remarkably similar lipid species

Melanin ghosts have greater proportions of particular lipid species compared with whole melanized and nonmelanized cells

Discussion
- Evans R.J.
- Pline K.
- Loynes C.A.
- Needs S.
- Aldrovandi M.
- Tiefenbach J.
- Bielska E.
- Rubino R.E.
- Nicol C.J.
- May R.C.
- Krause H.M.
- O'Donnell V.B.
- Renshaw S.A.
- Johnston S.A.
Experimental procedures
C. neoformans strains and cell growth
Culture conditions
Isolation of melanin “ghosts”
Preparation of whole fungal cells
Solid-state NMR measurements
Solid-state NMR quantitative analysis
Data availability
Acknowledgments
Supplementary Material
References
- Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis.Lancet Infect. Dis. 2017; 17 (28483415): 873-881
- Serologic evidence for Cryptococcus neoformans infection in early childhood.Pediatrics. 2001; 107 (11331716): e66
- Mechanisms of pulmonary escape and dissemination by Cryptococcus neoformans.J. Fungi. 2018; 4 (29463005): 1-17
- Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.Fungal Genet. Biol. 2015; 78 (25445308): 87-92
- Basic principles of the virulence of Cryptococcus.Virulence. 2019; 10 (31119976): 490-501
- Synthesis and assembly of fungal melanin.Appl. Microbiol. Biotechnol. 2012; 93 (22173481): 931-940
- Melanization of Cryptococcus neoformans in murine infection.Mol. Cell Biol. 1999; 19 (9858597): 745-750
- Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents.Infect. Immun. 2000; 68 (10768981): 2845-2853
- Fungal cell gigantism during mammalian infection.PLoS Pathog. 2010; 6 (20585557): 1-18
- What makes Cryptococcus neoformans a pathogen?.Emerg. Infect. Dis. 1998; 4 (9452400): 71-83
- Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds.Antimicrob. Agents Chemother. 2006; 50 (17065617): 3519-3528
- The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans.J. Biol. Chem. 2019; 294 (31118223): 10471-10489
- Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility.J. Biol. Chem. 2020; 295 (31896575): 1815-1828
- Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans.Eukaryot. Cell. 2007; 6 (17400891): 855-867
- A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans.Eukaryot. Cell. 2005; 4 (16278457): 1902-1912
- Melanin, melanin “ghosts,” and melanin composition in Cryptococcus neoformans.Infect. Immun. 1996; 64 (8698461): 2420-2424
- Solid-state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal eumelanins in the cell wall.J. Biol. Chem. 2015; 290 (25825492): 13779-13790
- Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides.Biochemistry. 2008; 47 (18370403): 4701-4710
- Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.J. Exp. Bot. 2016; 67 (26355148): 503-514
- High resolution 2D 1H-13C correlation of cholesterol in model membrane.J. Magn. Reson. 2002; 158: 143-148
- High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution.Molecules. 2017; 22: 1663-1671
- Applications of nuclear magnetic resonance in lipid analyses: an emerging powerful tool for lipidomics studies.Prog. Lipid Res. 2017; 68 (28911967): 37-56
- High-resolution nuclear magnetic resonance spectroscopy—applications to fatty acids and triacylglycerols.Lipids. 1997; 32 (9358427): 1019-1034
- Using simple 13C NMR linewidth and relaxation measurements to make detailed chemical shift assignments in triacylglycerols and related compounds.Chem. Phys. Lipids. 2002; 120 (12426074): 33-44
- Rapid analysis of major components and potential authentication of South African olive oils by quantitative 13C nuclear magnetic resonance spectroscopy.S. Afr. J. Sci. 2004; 100: 349-354
- The 13C-NMR spectra of oils containing γ-linolenic acid.Chem. Phys. Lipids. 1990; 56: 201-207
- Acyl positional distribution of glycerol tri-esters in vegetable oils: a 13C NMR study.Chem. Phys. Lipids. 1999; 103: 47-55
- Identification of mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas.J. Med. Entomol. 2011; 48 (21845943): 836-845
- Triacylglycerol composition of British bluebell (Hyacinthoides non-scripta) seed oil.RSC Adv. 2012; 2: 5314-5322
- Application of NMR to the study of olive oils.Prog. Nucl. Magn. Reson. Spectrosc. 1999; 35: 341-357
- Analysis of unsaturated C27 sterols by nuclear magnetic resonance spectroscopy.J. Lipid Res. 1996; 37 (8827525): 1529-1555
- Chemical constituents of Aglaia loheri.Pharmacogn. J. 2012; 4: 29-31
- Ergosta-7,22-dien-3β-ol glycoside from Tylopilus neofelleus.Phytochemistry. 1989; 28: 945-947
- Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of Pleurotus sajor-caju (Fr.) singer.J. Agric. Food Chem. 2011; 59 (21348494): 2618-2626
- Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.Drug Metab. Dispos. 2012; 40 (22106170): 436-444
- Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice.Nutrients. 2015; 7 (25756784): 1672-1687
- Determination of arrangement of isoprene units in pig liver dolichol by 13C-n.m.r. spectroscopy.Biochem. J. 1987; 243 (3632632): 481-485
- Complete 1H and 13C signal assignment of prenoI-10 with 3D NMR spectroscopy.Magn. Reson. Chem. 2009; 47 (19572259): 825-829
- Structural characterization of polyprenols by 13C-n.m.r. spectroscopy: signal assignments of polyprenol homologues.Polym. Rep. 1982; 23: 1087-1090
- Structure and biosynthesis mechanism of rubber from fungi.Rubber Chem. Technol. 1990; 63: 1-7
- Experimental modulation of capsule size in Cryptococcus neoformans.Biol. Proced. Online. 2004; 6 (15103395): 10-15
- The effect of l-DOPA on Cryptococcus neoformans growth and gene expression.Virulence. 2011; 2 (21705857): 329-336
- N-Acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.Microbiology (Reading). 2017; 163 (29043954): 1540-1556
- Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae.J. Biol. Chem. 2008; 283 (18430725): 17065-17074
- Characterization of lipid particles of the yeast, Saccharomyces cerevisiae.Yeast. 1994; 10 (7871881): 1421-1428
- The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition.J. Biol. Chem. 2002; 277 (12221100): 44507-44512
- Long-chain polyprenols promote spore wall formation in Saccharomyces cerevisiae.Genetics. 2017; 207 (28978675): 1371-1386
- The biological role of dolichol.Biochem. J. 1988; 251 (3291859): 1-9
- The importance of being dolichol.Biochem. Biophys. Res. Commun. 1998; 243 (9473469): 1-5
- Polyisoprenoids—secondary metabolites or physiologically important superlipids?.Biochem. Biophys. Res. Commun. 2011; 407 (21419101): 627-632
- Lipids affect the Cryptococcus neoformans-macrophage interaction and promote nonlytic exocytosis.Infect. Immun. 2017; 85 (28947642): 1-18
- Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1.Cell Cycle. 2011; 10 (21897120): 3159-3167
- Heteronuclear NMR studies of metabolites produced by Cryptococcus neoformans in culture media: identification of possible virulence factors.Magn. Reson. Med. 1999; 42 (<442::AID-MRM6>3.0.CO;2-Q10467288): 442-453
- Changes of lipid composition with growth phase of Cryptococcus neoformans.Agric. Biol. Chem. 1975; 39: 2365-2371
- Lipid composition of Cryptoccous neoformans.7. Microbiologica, 1984: 299-307 (6392829)
- Analysis of sphingolipids, sterols and phospholipids in human pathogenic Cryptococcus strains.J. Lipid Res. 2017; 58 (28811322): 2017-2036
- Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients.FEBS Lett. 1995; 368 (7628631): 326-330
- Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole.Antimicrob. Agents Chemother. 1994; 38 (7811014): 2029-2033
- Sterol compositions and susceptibilities to amphotericin B of environmental Cryptococcus neoformans isolates are changed by murine passage.Antimicrob. Agents Chemother. 1995; 39 (8540694): 1934-1937
- Regulation of melanin production by Cryptococcus neoformans.J. Clin. Microbiol. 1979; 10 (44517): 724-729
- Cryptococcus neoformans laccase catalyses melanin synthesis from both d- and l-DOPA.Microbiology. 2007; 153 (18048910): 3954-3962
- Relationship between polyene resistance and sterol compositions in Cryptococcus neoformans.Antimicrob. Agents Chemother. 1975; 7 (1094946): 99-106
- Characterization of the hexahydropolyprenols of Aspergillus fumigatus Fresenius.Biochem. J. 1967; 102 (6029603): 443-455
- Polyprenols of Aspergillus niger.Biochem. J. 1972; 126 (5073731): 1193-1202
- Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans.Fungal Genet. Biol. 2015; 78 (25307541): 59-64
- Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis.MBio. 2013; 4 (23943761): 1-10
- Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade.Eukaryot. Cell. 2005; 4 (15643074): 190-201
- Role of laccase in the biology and virulence of Cryptococcus neoformans.FEMS Yeast Res. 2004; 5 (15381117): 1-10
- Melanization in Cryptococcus neoformans requires complex regulation.MBio. 2020; 11 (32019794): e03313-e03319
- Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans.MBio. 2019; 10 (31575776): 1-21
- Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor.Infect. Immun. 2001; 69 (11500433): 5589-5596
- The role of laccase in prostaglandin production by Cryptococcus neoformans.Mol. Microbiol. 2008; 68 (18410494): 1428-1437
- Advances in our understanding of oxylipins.Am. Soc. Nutr. 2015; 6 (26374175): 513-540
- Cryptococcus neoformans produces authentic prostaglandin E2 without a cyclooxygenase.Eukaryot. Cell. 2007; 6 (17158733): 346-350
- Pathogenic yeasts Cryptococcus neoformans Candida albicans produce immunomodulatory prostaglandins.Infect. Immun. 2001; 69 (11292712): 2957-2963
- Proinflammatory and immunoregulatory roles of eicosanoids in T cells.Front. Immunol. 2013; 4 (23760108): 1-15
- Prostaglandins and inflammation.Arterioscler. Thromb. Vasc. Biol. 2011; 31 (21508345): 986-1000
- 15-Keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor γ (PPAR-γ) to promote Cryptococcus neoformans growth during infection.PLoS Pathog. 2019; 15 (30921435): e1007597
- Dolichol: function, metabolism, and accumulation in human tissues.Biochem. Cell Biol. 1992; 70 (1449704): 382-384
- Accumulation of dolichol in older tissues satisfies the proposed criteria to be qualified a biomarker of aging.J. Gerontol. 2005; 60 (15741281): 39-43
- Ageing and oxidative stress: a role for dolichol in the antioxidant machinery of cell membranes?.J. Alzheimers Dis. 2004; 6 (15096696): 129-135
- Dolichol: an essential part in the antioxidant machinery of cell membranes?.Biogerontology. 2003; 4 (14756125): 337-339
- Role of polyisoprenoids in tobacco resistance against biotic stresses.Physiol. Plant. 2009; 135 (19292825): 351-364
- Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.Acta Biochim. Pol. 2005; 52 (15827620): 233-241
- Disruption and mapping of IDI1, the gene for isopentenyl diphosphate isomerase in Saccharomyces cerevisiae.Yeast. 1992; 8 (1441751): 743-748
- Isolation of Schizosaccharomyces pombe isopentenyl diphosphate isomerase cDNA clones by complementation and synthesis of the enzyme in Escherichia coli.J. Biol. Chem. 1995; 270 (7744766): 11298-11303
- Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans.Curr. Genet. 2017; 63 (27783209): 519-530
- Nutritional requirements and their importance for virulence of pathogenic Cryptococcus species.Microorganisms. 2017; 5 (28974017): 65
- Dolichol is the major lipid component of human substantia nigra neuromelanin.J. Neurochem. 2005; 92 (15686500): 990-995
- Identification and quantification of dolichol and dolichoic acid in neuromelanin from substantia nigra of the human brain.J. Lipid Res. 2007; 48 (17446624): 1457-1462
- α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease.Brain. 2005; 128 (16000336): 2654-2664
- Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure.PLoS ONE. 2012; 7 (23139786): e48490
- New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals.Proc. Natl. Acad. Sci. U. S. A. 2008; 105 (18988735): 17567-17572
- Trapping toxins within lipid droplets is a resistance mechanism in fungi.Sci. Rep. 2015; 5 (26463663): 1-11
- Encapsulation of a reactive core in neuromelanin.Proc. Natl. Acad. Sci. U. S. A. 2006; 103 (17005730): 14647-14648
- Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes.New J. Sci. 2014; 2014: 1-28
- Interactions of iron, dopamine, and neuromelanin pathways in brain aging and Parkinson's disease.Physiol. Behav. 2017; 155 (26455458): 96-119
- Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence.Mol. Cell Biol. 1994; 14 (8007987): 4912-4919
- Natural abundance 13C-13C coupling observed via double-quantum coherence.J. Am. Chem. Soc. 1980; 102: 4849-4851
- Determination of through-bond carbon-carbon connectivities in solid-state NMR using the INADEQUATE experiment.J. Am. Chem. Soc. 1997; 119: 7867-7868
- An improved broadband decoupling sequence for liquid crystals and solids.J. Magn. Reson. 2000; 142 (10617439): 97-101
- Evaluation of a new broadband decoupling sequence: WALTZ-16.J. Magn. Reson. 1983; 53: 313-340
- Modelling one- and two-dimensional solid-state NMR spectra.Magn. Reson. Chem. 2002; 40: 70-76
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—C. C., E. C., A. C., and R. E. S. conceptualization; C. C. data curation; C. C. formal analysis; C. C., E. C., J. E. K., and H. W. validation; C. C., E. C., J. E. K., and H. W. investigation; C. C. visualization; C. C., E. C., J. E. K., and H. W. methodology; C. C., E. C., A. C., and R. E. S. writing-original draft; C. C., E. C., J. E. K., H. W., A. C., and R. E. S. writing-review and editing; J. E. K. and H. W. resources; J. E. K. and H. W. software; A. C. and R. E. S. supervision; A. C. and R. E. S. funding acquisition; A. C. and R. E. S. project administration.
Funding and additional information—This work was supported by National Institutes of Health Grant R01-AI052733. The 600-MHz NMR facilities used in this work are operated by City College (CCNY) and the CUNY Institute for Macromolecular Assemblies. C. C. was the recipient of fellowships from the United States Department of Education Graduate Assistance in Areas of National Need (GAANN) Program in Biochemistry, Biophysics, and Biodesign at the City College of New York (PA200A120211 and PA200A150068) and the James Whittam research excellence award of the CCNY Department of Chemistry and Biochemistry. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: ssNMR
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy