- innate immunity
- retinoic acid-inducible gene I protein (RIG-I)
- tripartite motif-containing 25 (TRIM25)
- melanoma differentiation–associated protein 5 (MDA5)
- severe fever with thrombocytopenia syndrome virus (SFTSV)
- nonstructural protein (NSs)
- inclusion body (IB)
- immune evasion
- virus-host interaction
- virulence factor
- virology
- infectious disease
- viral immunology
- Schlee M.
- Roth A.
- Hornung V.
- Hagmann C.A.
- Wimmenauer V.
- Barchet W.
- Coch C.
- Janke M.
- Mihailovic A.
- Wardle G.
- Juranek S.
- Kato H.
- Kawai T.
- Poeck H.
- Fitzgerald K.A.
- et al.
Results
SFTSV infection induces a rapid antiviral and inflammatory response

RIG-I and MDA5 expression is up-regulated by SFTSV infection

MAVS is a key mediator in the antiviral and inflammatory responses to SFTSV infection

Roles of RIG-I and MDA5 in SFTSV-triggered immune and inflammatory responses


5′-Triphosphate RNAs produced in SFTSV-infected cells are the primary PAMPs triggering anti-SFTSV immune and inflammatory signaling

Roles of RIG-I and MDA5 in host restriction to SFTSV infection

TRIM25, but not RIG-I itself or another E3 ubiquitin ligase, Riplet, is a cellular target of NSs in the RIG-I signaling pathway

NSs captures TRIM25, but not RIG-I or Riplet, into viral IB “jails”

NSs inhibits TRIM25-mediated Lys-63–linked ubiquitination of the RIG-I CARDs

Effects of NSs mutants with important motifs disrupted on TRIM25–RIG-I signaling

Discussion

- Matsuno K.
- Weisend C.
- Kajihara M.
- Matysiak C.
- Williamson B.N.
- Simuunza M.
- Mweene A.S.
- Takada A.
- Tesh R.B.
- Ebihara H.
Experimental procedures
Cell and virus
Plasmid and lentiviral construct
Target | RNAi plasmid | Target sequence (sense) |
---|---|---|
Human RIG-I | shRIG-I-1# | CAGAAGATCTTGAGGATAA |
shRIG-I-2# | AATTCATCAGAGATAGTCA | |
shRIG-I-3# | GGAAGAGGTGCAGTATATT | |
Human MDA5 | shMDA5-1# | CAACAAAGAAGCAGTGTAT |
shMDA5-2# | AGAAGTGTGCCGACTATCA | |
shMDA5-3# | GCAAGGAGTTCCAACCATTT | |
Human MAVS | shMAVS-1# | ATGTGGATGTTGTAGAGATTC |
shMAVS-2# | GACAAGACCTATAAGTATA | |
shMAVS-3# | GTATATCTGCCGCAATTTC | |
Human TRIM25 | shTRIM25-1# | GAGTGAGATCCAGACCTTGAA |
shTRIM25-2# | GAACTGAACCACAAGCTGATA | |
shTRIM25-3# | GATCTCTGCCTGGCACAATAA | |
EGFP | Control shRNA | GCCACAACGTCTATATCAT |
Antibody and reagent
Generation of the RIG-I- and MDA5-KO cell lines using the CRISPR/Cas9 system
Target | sgRNA | Target sequence |
---|---|---|
Human RIG-I | RIG-I-g1 | AAACAACAAGGGCCCAATGG (sense) |
RIG-I-g2 | TTGGATGCCCTAGACCATGC (sense) | |
Human MDA5 | MDA5-g1 | ATAGCGGAAATTCTCGTCTG (anti-sense) |
MDA5-g2 | TCATGAGCGTTCTCAAACGA (anti-sense) |
qRT-PCR
Primer name | Primer sequence (5′–3′) |
---|---|
RIG-I-F | GCCTTCAGACATGGGACGAA |
RIG-I-R | ACTGCTTTGGCTTGGGATGT |
MDA5-F | TGTGCTGGACTACCTGACCT |
MDA5-R | ACGAATTCCCGAGTCCAACC |
MAVS-F | AGCTAGTTGATCTCGCGGAC |
MAVS-R | TTCTCTCCTGGGGACTCTGG |
IFN-β-F | CACTACAGCTCTTTCCATGA |
IFN-β-R | AGCCAGTGCTAGATGAATCT |
TNF-α-F | AAAACAACCCTCAGACGCCA |
TNF-α-R | GCTACAGGCTTGTCACTCGG |
MxA-F | GCTACACACCGTGACGGATATGG |
MxA-R | CGAGCTGGATTGGAAAGCCC |
OAS2-F | CGGTGTATGCCTGGGAACAGG |
OAS2-R | GGGTCAACTGGATCCAAGATTAC |
ISG56-F | CCTCCTTGGGTTCGTCTACA |
ISG56-R | GGCTGATATCTGGGTGCCTA |
ISG15-F | TCCTGGTGAGGAATAACAAGGG |
ISG15-R | GTCAGCCAGAACAGGTCGTC |
IL-8-F | GGACAAGAGCCAGGAAGAAACC |
IL-8-R | TCTCAGCCCTCTTCAAAAACTTCT |
RANTES-F | GGCAGCCCTCGCTGTCATCC |
RANTES-R | GCAGCAGGGTGTGGTGTCCG |
IP-10-F | AGGAACCTCCAGTCTCAGCA |
IP-10-R | CAAAATTGGCTTGCAGGAAT |
SFTSV S segment-F | ACATTTTCCCTGATGCCTTG |
SFTSV S segment-R | GCTGAAGGAGACAGGTGGAG |
SFTSV M segment-F | TGTGGAGGGATGCGTGTCAGA |
SFTSV M segment-R | AGTGGAATTGAATCTCCGTGCT |
SFTSV L segment-F | TCACGCCACTGCTTTCGCTTT |
SFTSV L segment-R | CGGCTCCTGACAATGTTCCT |
TRIM25-F | CGAGGTGGAACTGAACCACA |
TRIM25-R | GGACAGGGGGAGGTTTCTTG |
GAPDH-F | ACCACAGTCCATGCCATCAC |
GAPDH-R | TCCACCACCCTGTTGCTGTA |
Reporter gene assay
Immunofluorescence and confocal microscopy
Pulldown, co-immunoprecipitation, and MS
Western blotting analysis
Statistical analysis
Data availability
Acknowledgments
Supplementary Material
References
- RIG-I and other RNA sensors in antiviral immunity.Annu. Rev. Immunol. 2018; 36 (29677479): 667-694
- Cytosolic DNA sensors regulating type I interferon induction.Trends Immunol. 2011; 32 (21940216): 574-581
- Pattern recognition receptors and inflammation.Cell. 2010; 140 (20303872): 805-820
- Protect this house: cytosolic sensing of viruses.Curr. Opin. Virol. 2017; 22 (27951430): 36-43
- Discriminating self from non-self in nucleic acid sensing.Nat. Rev. Immunol. 2016; 16 (27455396): 566-580
- Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity.Virol. Sin. 2015; 30 (25997992): 163-173
- Cell type-specific involvement of RIG-I in antiviral response.Immunity. 2005; 23 (16039576): 19-28
- RIG-I in RNA virus recognition.Virology. 2015; 479-480 (25749629): 110-121
- mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (11805321): 637-642
- LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20080593): 1512-1517
- The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.Nat. Immunol. 2004; 5 (15208624): 730-737
- RIG-I detects viral genomic RNA during negative-strand RNA virus infection.Cell. 2010; 140 (20144762): 397-408
- Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I.Nat. Struct. Mol. Biol. 2010; 17 (20581823): 781-787
- Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus.Immunity. 2009; 31 (19576794): 25-34
- Master sensors of pathogenic RNA—RIG-I like receptors.Immunobiology. 2013; 218 (23896194): 1322-1335
- TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.Nature. 2007; 446 (17392790): 916-920
- RIPLET, and not TRIM25, is required for endogenous RIG-I-dependent antiviral responses.Immunol. Cell Biol. 2019; 97 (31335993): 840-852
- To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system.J. Gen. Virol. 2019; 100 (31661051): 1641-1662
- Ubiquitin-dependent and -independent roles of E3 ligase RIPLET in innate immunity.Cell. 2019; 177 (31006531): 1187-1200
- Regulation of RIG-I activation by K63-linked polyubiquitination.Front. Immunol. 2017; 8 (29354136): 1942
- Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection.J. Biol. Chem. 2009; 284 (19017631): 807-817
- TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity.J. Exp. Med. 2017; 214 (28031478): 459-473
- VISA is an adapter protein required for virus-triggered IFN-β signaling.Mol. Cell. 2005; 19 (16153868): 727-740
- Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3.Cell. 2005; 122 (16125763): 669-682
- Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.Nature. 2005; 437 (16177806): 1167-1172
- IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.Nat. Immunol. 2005; 6 (16127453): 981-988
- Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens.J. Virol. 2014; 88 (24623415): 5213-5216
- Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform.J. Mol. Cell Biol. 2014; 6 (24706939): 324-337
- Crimean-Congo hemorrhagic fever virus suppresses innate immune responses via a ubiquitin and ISG15 specific protease.Cell Rep. 2017; 20 (28877473): 2396-2407
- Viral tricks to grid-lock the type I interferon system.Curr. Opin. Microbiol. 2010; 13 (20538505): 508-516
- Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I.Cell Host Microbe. 2009; 5 (19454348): 439-449
- Viral evasion of intracellular DNA and RNA sensing.Nat. Rev. Microbiol. 2016; 14 (27174148): 360-373
- Fever with thrombocytopenia associated with a novel bunyavirus in China.N. Engl. J. Med. 2011; 364 (21410387): 1523-1532
- Taxonomy of the order Bunyavirales: update 2019.Arch. Virol. 2019; 164 (31065850): 1949-1965
- Hemorrhagic fever caused by a novel tick-borne Bunyavirus in Huaiyangshan, China.Chin. J. Epidemiol. 2011; 32 (21457654): 209-220
- Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus.PLoS Pathog. 2011; 7 (22114553): e1002369
- Severe fever with thrombocytopenia syndrome, South Korea, 2012.Emerg. Infect. Dis. 2013; 19 (24206586): 1892-1894
- The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan.J. Infect. Dis. 2014; 209 (24231186): 816-827
- Combinatorial minigenome systems for emerging banyangviruses reveal viral reassortment potential and importance of a protruding nucleotide in genome “panhandle” for promoter activity and reassortment.Front. Microbiol. 2020; 11 (32322247): 599
- Cytokine and chemokine levels in patients with severe fever with thrombocytopenia syndrome virus.PLoS ONE. 2012; 7 (22911786): e41365
- Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome.J. Infect. Dis. 2012; 206 (22904342): 1085-1094
- Hemorrhagic fever caused by a novel Bunyavirus in China: pathogenesis and correlates of fatal outcome.Clin. Infect. Dis. 2012; 54 (22144540): 527-533
- Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses.J. Virol. 2014; 88 (24478431): 4572-4585
- Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies.J. Virol. 2014; 88 (24335286): 3067-3076
- Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies.J. Virol. 2015; 89 (25631085): 4227-4236
- RIG-I-like receptor and Toll-like receptor signaling pathways cause aberrant production of inflammatory cytokines/chemokines in a severe fever with thrombocytopenia syndrome virus infection mouse model.J. Virol. 2018; 92 (29643242): e02246-17
- The broad-spectrum antiviral functions of IFIT and IFITM proteins.Nat. Rev. Immunol. 2013; 13 (23237964): 46-57
- Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides.J. Immunol. 2002; 168 (11970999): 4531-4537
- Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction.PLoS ONE. 2008; 3 (18446221): e2032
- Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling.Cell Host Microbe. 2013; 13 (23498958): 336-346
- RIG-I mediates an antiviral response to Crimean-Congo hemorrhagic fever virus.J. Virol. 2015; 89 (26223644): 10219-10229
- The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection.Cell Host Microbe. 2010; 8 (21147464): 496-509
- NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages.Sci. Adv. 2019; 5: eaav0163
- The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response.Nat. Immunol. 2019; 20 (31036902): 812-823
- Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway.Cell Rep. 2016; 16 (27425606): 1315-1325
- Roles of RIG-1 N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18948594): 16743-16748
- Two conserved amino acids within the NSs of severe fever with thrombocytopenia syndrome phlebovirus are essential for anti-interferon activity.J. Virol. 2018; 92 (30021900): e00706-18
- Case-fatality ratio and effectiveness of ribavirin therapy among hospitalized patients in China who had severe fever with thrombocytopenia syndrome.Clin. Infect. Dis. 2013; 57 (23965284): 1292-1299
- A highly pathogenic new bunyavirus emerged in China.Emerg. Microbes Infect. 2013; 2 (26038435): 1-4
- Human-to-human transmission of severe fever with thrombocytopenia syndrome bunyavirus through contact with infectious blood.J. Infect. Dis. 2013; 207 (23225899): 736-739
- Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5′ termini of their genomic RNAs are monophosphorylated.J. Gen. Virol. 2011; 92 (21289157): 1199-1204
- TLR3 deletion limits mortality and disease severity due to phlebovirus infection.J. Immunol. 2006; 177 (17056560): 6301-6307
- Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8.Science. 2004; 303 (14976262): 1526-1529
- Recognition of single-stranded RNA viruses by Toll-like receptor 7.Proc. Natl. Acad. Sci. U. S. A. 2004; 101 (15034168): 5598-5603
- Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3.Nature. 2001; 413 (11607032): 732-738
- The immunobiology of the TLR9 subfamily.Trends Immunol. 2004; 25 (15207506): 381-386
- Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9.Springer Semin. Immun. 2005; 26 (15592841): 221-229
- Interferon-γ-directed inhibition of a novel high-pathogenic phlebovirus and viral antagonism of the antiviral signaling by targeting STAT1.Front. Immunol. 2019; 10 (31191546): 1182
- The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling.J. Virol. 2018; 92 (29263274): e01737-17
- The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination.J. Virol. 2017; 91 (28148787): e02143-16
- Herpesvirus deconjugases inhibit the IFN response by promoting TRIM25 autoubiquitination and functional inactivation of the RIG-I signalosome.PLoS Pathol. 2018; 14 (29357390): e1006852
- Human respiratory syncytial virus NS 1 targets TRIM25 to suppress RIG-I ubiquitination and subsequent RIG-I-mediated antiviral signaling.Viruses. 2018; 10 (30558248): 716
- TRIM25 is required for the antiviral activity of zinc finger antiviral protein.J. Virol. 2017; 91 (28202764): e00088-17
- TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP).PLoS Pathol. 2017; 13 (28060952): e1006145
- TRiM25 in the regulation of the antiviral innate immunity.Front. Immunol. 2017; 8 (29018447): 1187
- MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors.BMC Biol. 2012; 10 (22626058): 44
- Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.J. Biol. Chem. 2017; 292 (28848048): 16722-16733
- First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods.Am. J. Trop. Med. Hyg. 2013; 89 (23878186): 445-452
- Novel phlebovirus with zoonotic potential isolated from ticks, Australia.Emerg. Infect. Dis. 2014; 20 (24856477): 1040-1043
- Malsoor virus, a novel bat phlebovirus, is closely related to severe fever with thrombocytopenia syndrome virus and heartland virus.J. Virol. 2014; 88 (24390329): 3605-3609
- Comprehensive molecular detection of tick-borne phleboviruses leads to the retrospective identification of taxonomically unassigned bunyaviruses and the discovery of a novel member of the genus phlebovirus.J. Virol. 2015; 89 (25339769): 594-604
- A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, is a potential pathogen.Emerg. Microbes Infect. 2018; 7 (29802259): 1-14
- The nonstructural protein of Guertu virus disrupts host defenses by blocking antiviral interferon induction and action.ACS Infect. Dis. 2020; 6 (32167734): 857-870
- RAVER1 is a coactivator of MDA5-mediated cellular antiviral response.J. Mol. Cell Biol. 2013; 5 (23390309): 111-119
- Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction.J. Virol. 2010; 84 (20007272): 1785-1791
- Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation.J. Neurosci. 2005; 25 (15728840): 2002-2009
- Genome engineering using the CRISPR-Cas9 system.Nat. Protoc. 2013; 8 (24157548): 2281-2308
- A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target.Sci. Adv. 2016; 2 (27051880): e1501535
- Ebola virus mucin-like glycoprotein (Emuc) induces remarkable acute inflammation and tissue injury: evidence for Emuc pathogenicity in vivo.Protein Cell. 2018; 9 (28956289): 389-393
- Optimized THP-1 differentiation is required for the detection of responses to weak stimuli.Inflammation Res. 2007; 56 (17334670): 45-50
- Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus.J. Virol. 2013; 87 (23115289): 829-839
- Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1.J. Biol. Chem. 2019; 294 (31040183): 9503-9517
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—Y.-J. N. and Y.-Q. M. designed the study and experiments. Y.-Q. M. data curation; Y.-Q. M. formal analysis; Y.-Q. M., Y.-J. N., H. W., and F. D. funding acquisition; Y.-Q. M., Y.-J. N., H. W., and F. D. validation; Y.-Q. M. and Y.-J. N. investigation; Y.-Q. M. visualization; Y.-Q. M. methodology; Y.-Q. M. and Y.-J. N. writing-original draft; Y.-J. N. writing-review and editing; H. W. and F. D. supervision.
Funding and additional information—This work was supported by National Natural Science Foundation of China Grants 31700146, 31870162, 31621061, and 31600144 and National Key Research and Development Program of China Grant 2018YFA0507202.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: PRR
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy