- Nye M.D.
- Almada L.L.
- Fernandez-Barrena M.G.
- Marks D.L.
- Elsawa S.F.
- Vrabel A.
- Tolosa E.J.
- Ellenrieder V.
- Fernandez-Zapico M.E.
- Carr R.M.
- Romecin Duran P.A.
- Tolosa E.J.
- Ma C.
- Oseini A.M.
- Moser C.D.
- Banini B.A.
- Huang J.
- Asumda F.
- Dhanasekaran R.
- Graham R.P.
- Toruner M.D.
- Safgren S.L.
- Almada L.L.
- Wang S.
- et al.
Results
GLI1-mediated transcription is regulated through multiple regions in its C-terminal transactivation domain (TAD)

SMARCA2 interacts with GLI1 and promotes its transcriptional activity
- Nye M.D.
- Almada L.L.
- Fernandez-Barrena M.G.
- Marks D.L.
- Elsawa S.F.
- Vrabel A.
- Tolosa E.J.
- Ellenrieder V.
- Fernandez-Zapico M.E.
- Nye M.D.
- Almada L.L.
- Fernandez-Barrena M.G.
- Marks D.L.
- Elsawa S.F.
- Vrabel A.
- Tolosa E.J.
- Ellenrieder V.
- Fernandez-Zapico M.E.

GLI1 and SMARCA2 regulate chromatin accessibility at distal regions to gene transcription start sites


Gene | Description | GLI1 RNA Log2FC | GLI1 peak fold change | SMARCA2 peak fold change |
---|---|---|---|---|
MMP11 | Matrix metallopeptidase 11 | −2.72 | −2.02 | −1.5 |
MRAP2 | Melanocortin 2 receptor accessory protein 2 | −1.91 | −1.79 | −1.77 |
A4GALT | α1,4-Galactosyl-transferase (P blood group) | −1.80 | −2.38 | −1.55 |
HHIP | Hedgehog interacting protein | −1.72 | −3 | −1.6 |
CHCHD10 | Coiled-coil–helix–coiled-coil–helix domain containing 10 | −1.10 | −2.02 | −1.5 |
GORASP2 | Golgi reassembly stacking protein 2 | −1.07 | −3.01 | −1.79 |
DCC | DCC netrin 1 receptor | −0.84 | −2.28 | −1.73 |
ZCCHC8 | Zinc finger CCHC-type containing 8 | −0.74 | −2.01 | −1.45 |
FSTL4 | Follistatin like 4 | −0.73 | −1.77 | −1.48 |
FRMD4A | FERM domain containing 4A | −0.72 | −1.81 | −1.66 |
NFIA | Nuclear factor I A | −0.67 | −1.99 | −1.57 |
LRCH1 | Leucine-rich repeats and calponin homology domain containing 1 | 0.58 | −1.88 | −1.21 |
ACVR2A | Activin A receptor type 2A | 0.61 | −2.22 | −1.49 |
PDCD6IP | Programmed cell death 6 interacting protein | 0.62 | −2.36 | −1.5 |
FBXO11 | F-box protein 11 | 0.68 | −1.85 | −1.44 |
SPRY2 | Sprouty RTK signaling antagonist 2 | 0.73 | −1.99 | −1.7 |
PRKG1 | Protein kinase cGMP-dependent 1 | 0.76 | −1.82 | −1.88 |
MEF2C | Myocyte enhancer factor 2C | 0.80 | −1.97 | −1.68 |
CDC42EP3 | CDC42 effector protein 3 | 0.84 | −1.88 | −1.58 |
DARS | Aspartyl-tRNA synthetase | 0.84 | −2.24 | −1.6 |
FOXN2 | Forkhead box N2 | 0.89 | −1.85 | −1.38 |
NOG | Noggin | 1.07 | −1.87 | −1.44 |
CXCR4 | CXC motif chemokine receptor 4 | 1.21 | −2.24 | −1.78 |
ANXA3 | Annexin A3 | 1.29 | −2.05 | −1.79 |
ELAVL2 | ELAV like RNA binding protein 2 | 1.46 | −2 | −1.33 |
OTUD1 | OTU deubiquitinase 1 | 1.46 | −1.78 | −1.54 |
GALNT10 | Polypeptide N-acetyl-galactosaminyltransferase 10 | 1.51 | −2.2 | −1.94 |
DCX | Doublecortin | 1.57 | −1.67 | −1.77 |
KLHL31 | Kelch like family member 31 | 1.62 | −2.11 | −1.74 |
RND3 | Rho family GTPase 3 | 1.68 | −1.63 | −1.56 |
ADAMTS5 | ADAM metallopeptidase with thrombospondin type 1 motif 5 | 1.69 | −2.38 | −1.78 |
SEMA3E | Semaphorin 3E | 1.82 | −2.1 | −1.58 |
GLI1 and SMARCA2 are enriched at distal chromatin sites for HHIP, a GLI1-regulated gene

Discussion
- Nye M.D.
- Almada L.L.
- Fernandez-Barrena M.G.
- Marks D.L.
- Elsawa S.F.
- Vrabel A.
- Tolosa E.J.
- Ellenrieder V.
- Fernandez-Zapico M.E.
- Nye M.D.
- Almada L.L.
- Fernandez-Barrena M.G.
- Marks D.L.
- Elsawa S.F.
- Vrabel A.
- Tolosa E.J.
- Ellenrieder V.
- Fernandez-Zapico M.E.
Materials and methods
General cell culture
Plasmid preparation
Amino acid region | Sense primer (5′ to 3′) | Antisense primer (5′ to 3′) |
---|---|---|
GLI1 | ||
Full-length | CCCAAGCTTATGTTCAACTCGATGACCCCA | CTAGTCTAGAGGCACTAGAGTTGAGGAATTCTGT |
1–234 | CCCAAGCTTCATGTTCAACTCGATGACCCCA | CTAGTCTAGATTATTCATACACAGATTCAGGCTCA |
232–393 | CCCAAGCTTCGTGTATGAAACTGACTGCCGT | CTAGTCTAGATTACACATGGGCGTCAGGACCATGC |
383–595 | CCCAAGCTTCGTCAAGACAGTGCATGGTCCTGACGCC | CTATCTAGAAGCATATCTTGCCCGAAGCAGGTAGTG |
539–1106 | CCCAAGCTTCCTTGAACGCCGCAGCAGCAGC | CTATCTAGATTAGGCACTAGAGTTGAGGAATTC |
594–787 | CCCAAGCTTCGCTTCAGCCAGAGGGGGTGGTACTTCG | CTATCTAGAAGAGTGGGAAGGGAACTCACCCCATGT |
748–946 | CCCAAGCTTCCCAGGCTCTCTGCCTCTTGGG | CTATCTAGAGTTCACTGGAGCTTTAGCACGGCT |
946–1106 | CCCAAGCTTCAACACATATGGACCTGGCTTT | CTATCTAGATTAGGCACTAGAGTTGAGGAATTC |
SMARCA2 | ||
Full-length | CAGTTCGAATTCATGTCAACGCCCACAGACCCTGGTGCG | GCTCTAGACTCATCATCCGTCCCACTTCCTTCTGAC |
1–1344 | CGGAATTCATGTCAACGCCCACAGACCCTG | GCTCTAGACTTAAGCCGTACTTCCTCTTCCATTTCCTCC |
1–785 | CGGAATTCATGTCCACGCCCACAGACCC | GCTCTAGATAGAGTCGAAAGGGGAACAATGATGAGATAGGG |
786–1590 | GGAATTCATGTCTAACTGGACATATGAATTTGACAAATGGGCTCCT | GCTCTAGACTCATCATCCGTCCCACTTCCTTCTGAC |
1–394 | CGTAGAATTCATGTCCACGCCCACAGACCCTGGTG | CGTCTAGACAGCTGACGCTGGAAATTGAGTAACC |
393–786 | CGGAATTCATGAGACAGGAGGTGGTGGCCTGCATG | GCTCTAGATAGAGTCGAAAGGGGAACAATGATGAGATAGGG |
786–1179 | CGGAATTCATGTCTAACTGGACATATGAATTTGACAAATGGGCTCCT | GCTCTAGAGCTGTTCACGGTACAGAGCCTCAG |
1180–1590 | CGGAATTCATGGTGGAGGAAAAGATCCTCGCGG | GCTCTAGACTCATCATCCGTCCCACTTCCTTCTGAC |
Transfection conditions
Luciferase assays
Isolation of protein and WB
MNase digestion
RNA isolation and quantitation
Gene | Forward | Reverse |
---|---|---|
GLI1 | TGCCTTGTACCCTCCTCCCGAA | GCGATCTGTGATGGATGAGATTCCC |
HPRT | TGGAAAAGCAAAATACAAAGCCTAAGATGA | ATCCGCCCAAAGGGAACTGATAGTC |
SMARCA2 | GGAGCAGGATGAACGTGAACAGTC | AAACAACCCAGTGCCTATATGACA |
TBP | GGTTTGCTGCGGTAATCATGA | CTCCTGTGCACACCATTTTCC |
HHIP | AGAACTGCAAAATGTGAGCCAG | TCTGATCAAGAATACCTGCCCTG |
RNA-seq and ATAC-seq
ChIP analysis
Immunoprecipitations
Data Availability
Acknowledgments
Supplementary Material
References
- Identification of an amplified, highly expressed gene in a human glioma.Science. 1987; 236 (3563490): 70-73
- Gli transcription factors mediate the oncogenic transformation of prostate basal cells induced by a Kras–androgen receptor axis.J. Biol. Chem. 2016; 291 (27760825): 25749-25760
- Gli1 promotes cell survival and is predictive of a poor outcome in ERα-negative breast cancer.Breast Cancer Res. Treat. 2010; 123 (19902354): 59-71
- Sonic hedgehog and Gli1 expression predict outcomein resected pancreatic adenocarcinoma.Clin. Cancer Res. 2015; 21 (25552484): 1215-1224
- Expression of Gli1 and Wnt2B correlates with progression and clinical outcome of pancreatic cancer.Int. J. Clin. Exp. Pathol. 2014; 7 (25120849): 4531-4538
- Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation.Carcinogenesis. 2009; 30 (19028702): 131-140
- Development of mammary tumors by conditional expression of GLI1.Cancer Res. 2009; 69 (19458072): 4810-4817
- Loss of the transcription factor GLI1 identifies a signaling network in the tumor microenvironment mediating KRAS oncogene-induced transformation.J. Biol. Chem. 2013; 288 (23482563): 11786-11794
- Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site.Gene. 2004; 330 (15087129): 101-114
- The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner.J. Biol. Chem. 2014; 289 (24739390): 15495-15506
- The extracellular sulfatase SULF2 promotes liver tumorigenesis by stimulating assembly of a promoter looping GLI1–STAT3 transcriptional complex.J. Biol. Chem. 2020; 295 (31988246): 2698-2712
- Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development. 1993; 118 (8223268): 401-415
- Two human homologues of saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor.Nucleic Acids Res. 1994; 22 (8208605): 1815-1820
- Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21768360): 12758-12763
- PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress.Cell Death Differ. 2013; 20 (24013724): 1688-1697
- Histone acetyltransferase PCAF is required for hedgehog-Gli–dependent transcription and cancer cell proliferation.Cancer Res. 2013; 73 (23943798): 6323-6333
- p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9.DNA Repair (Amst.). 2015; 34 (26282181): 9-17
- GLI activates transcription through a herpes simplex viral protein 16-like activation domain.J. Biol. Chem. 1998; 273 (9452474): 3496-3501
- Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19666565): 14132-14137
- deepTools2: a next generation web server for deep-sequencing data analysis.Nucleic Acids Res. 2016; 44 (27079975): W160-W165
- GREAT improves functional interpretation of cis-regulatory regions.Nat. Biotechnol. 2010; 28 (20436461): 495-501
- Sonic hedgehog–induced activation of the Gli1 promoter is mediated by GLI3.J. Biol. Chem. 1999; 274 (10075717): 8143-8152
- Identification of novel GLI1 target genes and regulatory circuits in human cancer cells.Mol. Oncol. 2018; 12 (30098229): 1718-1734
- Systematic analysis of chromatin state dynamics in nine human cell types HHS public access.Nature. 2011; 473 (21441907): 43-49
- Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes.Mol. Cell. 2003; 11 (12620226): 377-389
- The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues.Appl. Immunohistochem. Mol. Morphol. 2005; 13 (15722796): 66-74
- Targeting Gli transcription activation by small molecule suppresses tumor growth.Oncogene. 2014; 33 (23686308): 2087-2097
- The GeneCards suite: from gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics. 2016; 54 (27322403): 1.30.1-1.30.33
- GeneHancer: genome-wide integration of enhancers and target genes in GeneCards.Database (Oxford). 2017; 2017 (28605766)
- Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol. 2014; 15 (25516281): 550
- An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues.Nat. Methods. 2017; 14 (28846090): 959-962
- ATAC-seq: a method for assaying chromatin accessibility genome-wide.Curr. Protoc. Mol. Biol. 2016; 109 (25559105): 21.29.1-21.29.9
- DiffBind: differential binding analysis of ChIP-Seq peak data. Cambridge University, Cambridge, UK2016
- The Galaxy platform for accessible, reproducible and colaborative biomedical analyses: 2018 update.Nucleic Acids Res. 2018; 46 (29790989): W537-W544
- Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.Mol. Cell. 2010; 38 (20513432): 576-589
- The sequence alignment/map format and SAMtools.Bioinformatics. 2009; 25 (19505943): 2078-2079
- MultiQC: summarize analysis results for multiple tools and samples in a single report.Bioinformatics. 2016; 32 (27312411): 3047-3048
- The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote.Nucleic Acids Res. 2013; 41 (e108 23558742): e108
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—S. L. S., L. L. A., D. L. M., N. H.-A., and M. E. F.-Z. conceptualization; S. L. S., R. L. O. O., L. L. A., N. H.-A., A. G.-M., and M. E. F.-Z. data curation; S. L. S., R. L. O. O., L. L. A., D. L. M., N. H.-A., A. G.-M., and M. E. F.-Z. formal analysis; S. L. S., R. L. O. O., AMV, L. L. A., D. L. M., and N. H.-A. investigation; S. L. S., R. L. O. O., AMV, L. L. A., D. L. M., and N. H.-A. methodology; S. L. S., D. L. M., N. H.-A., and M. E. F.-Z. writing-original draft; S. L. S., R. L. O. O., AMV, L. L. A., D. L. M., N. H.-A., A. G.-M., and M. E. F.-Z. writing-review and editing; AMV, L. L. A., and M. E. F.-Z. resources; M. E. F.-Z. funding acquisition; M. E. F.-Z. visualization.
Funding and additional information—This work was supported by NCI, National Institutes of Health Grant CA136526 (to M. E. F.-Z.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for Nelmary Hernandez-Alvarado: Dept. of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
Abbreviations—The abbreviations used are: MNase
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy