Introduction
- Bode W.
- Turk D.
- Karshikov A.
Results
19F labeling
- Bode W.
- Turk D.
- Karshikov A.
PDB entry | 6V5T | 6V64 |
Buffer/salt | 0.1 m HEPES, pH 7.0 | 0.2 m sodium/potassium tartrate, pH 7.5 |
PEG | 8000 (25%) | 3350 (14%) |
Data collection | ||
Wavelength (Å) | 1.54 | 1.54 |
Space group | P21 | P21212 |
Unit cell dimensions (Å) | a = 44.5, b = 58.9, c = 52.4, β = 98.4 | a = 61.9, b = 86.6, c = 50.5 |
Molecules/asymmetric unit | 1 | 1 |
Resolution range (Å) | 40–2.1 | 40–2.3 |
Observations | 79,521 | 62,626 |
Unique observations | 15,696 | 12,020 |
Completeness (%) | 99.3 (97.0) | 94.9 (84.5) |
Rsym (%) | 7.3 (55.9) | 11.5 (33.4) |
I/σ(I) | 18.0 (2.4) | 11.7 (2.4) |
Refinement | ||
Resolution (Å) | 40–2.1 | 40–2.3 |
Rcryst, Rfree | 0.177, 0.230 | 0.197, 0.277 |
Reflections (working/test) | 14,911/772 | 11,333/588 |
Protein atoms | 2,356 | 2,283 |
Solvent molecules | 103 | 108 |
PPACK | 1 | |
Na+ | 2 | |
RMSD bond lengths (Å) | 0.008 | 0.010 |
RMSD angles (°) | 1.5 | 1.8 |
RMSD ΔB (Å2) (mm/ms/ss) | 3.21/2.98/3.50 | 2.04/2.20/2.08 |
Protein | 41.5 | 43.6 |
Solvent | 42.6 | 40.6 |
PPACK | 32.3 | |
Na+ | 33.8 | |
Ramachandran plot (%) | ||
Most favored | 95.0 | 95.0 |
Generously allowed | 5.0 | 5.0 |
Disallowed | 0.0 | 0.0 |

- Bode W.
- Turk D.
- Karshikov A.

19F NMR measurements

Thrombin | Prethrombin-2 | |
---|---|---|
Trp29 | ND | ND |
Trp51 | −46.7 | −46.7 |
Trp60d | −48.5, −48.7 | −47.9 |
Trp96 | −47.9 | −47.9 |
Trp141 | −43.5 | −47.9 |
Trp148 | −48.5 | −47.9 |
Trp207 | ND | −47.9 |
Trp215 | −47.5 | −47.9, −49.8 |
Trp237 | −49.4 | −48.6 |
Resonance assignment
- Bode W.
- Turk D.
- Karshikov A.
- Bode W.
- Turk D.
- Karshikov A.


Residue dynamics




- Bode W.
- Turk D.
- Karshikov A.
Discussion
Materials and methods
Reagents
19F NMR studies
X-ray studies
Data availability
Acknowledgments
References
- Serine peptidases: classification, structure and function.Cell Mol. Life Sci. 2008; 65 (18259688): 1220-1236
- Serine protease mechanism and specificity.Chem. Rev. 2002; 102 (12475199): 4501-4524
- Structural basis of substrate specificity in the serine proteases.Protein Sci. 1995; 4 (7795518): 337-360
- Structural basis of the activation and action of trypsin.Acc. Chem. Res. 1978; 11: 114-122
- Crystal structure of bovine trypsinogen at 1–8 A resolution: I. Data collection, application of patterson search techniques and preliminary structural interpretation.J. Mol. Biol. 1976; 106 (978726): 325-335
- Crystal structure analysis and refinement of two variants of trigonal trypsinogen: trigonal trypsin and PEG (polyethylene glycol) trypsinogen and their comparison with orthorhombic trypsin and trigonal trypsinogen.FEBS Lett. 1978; 90 (668890): 265-269
- The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding: the refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution.J. Mol. Biol. 1978; 118 (625059): 99-112
- The refined 1.9-A X-ray crystal structure of d-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.Protein Sci. 1992; 1 (1304349): 426-471
- Allostery in trypsin-like proteases suggests new therapeutic strategies.Trends Biotechnol. 2011; 29 (21726912): 577-585
- Kinetic dissection of the pre-existing conformational equilibrium in the trypsin fold.J. Biol. Chem. 2015; 290 (26216877): 22435-22445
- X-ray structures of free and leupeptin-complexed human αI-tryptase mutants: indication for an α → β-tryptase transition.J. Mol. Biol. 2006; 357 (16414069): 195-209
- Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution.J. Mol. Biol. 1985; 185 (4057257): 595-624
- Crystal structures of prethrombin-2 reveal alternative conformations under identical solution conditions and the mechanism of zymogen activation.Biochemistry. 2011; 50 (22049947): 10195-10202
- Residues W215, E217 and E192 control the allosteric E*–E equilibrium of thrombin.Sci. Rep. 2019; 9 (31444378): 12304
- Interplay between conformational selection and zymogen activation.Sci. Rep. 2018; 8 (29511224): 4080
- Role of the I16-D194 ionic interaction in the trypsin fold.Sci. Rep. 2019; 9 (31792294): 18035
- Crystallographic and kinetic evidence of allostery in a trypsin-like protease.Biochemistry. 2011; 50 (21707111): 6301-6307
- Conformational selection in trypsin-like proteases.Curr. Opin. Struct. Biol. 2012; 22 (22664096): 421-431
- Conformational selection or induced fit?: A critical appraisal of the kinetic mechanism.Biochemistry. 2012; 51 (22775458): 5894-5902
- NMR resonance assignments of thrombin reveal the conformational and dynamic effects of ligation.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20660315): 14087-14092
- Slow thrombin is zymogen-like.J. Thromb. Haemost. 2009; 7 (19630791): 159-164
- Ligand binding shuttles thrombin along a continuum of zymogen-like and proteinase-like states.J. Biol. Chem. 2010; 285 (20639195): 28651-28658
- NMR reveals a dynamic allosteric pathway in thrombin.Sci. Rep. 2017; 7 (28059082): 39575
- The dynamic structure of thrombin in solution.Biophys. J. 2012; 103 (22828334): 79-88
- Real-time and equilibrium 19F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (11792867): 709-714
- Use of 19F NMR to probe protein structure and conformational changes.Annu. Rev. Biophys. Biomol. Struct. 1996; 25 (8800468): 163-195
- The preparation of 19F-labeled proteins for NMR studies.Methods Enzymol. 2004; 380 (15051347): 400-415
- Structural insights into the dynamic process of β2-adrenergic receptor signaling.Cell. 2015; 161 (25981665): 1101-1111
- 19F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus.Structure. 2014; 22 (24582435): 515-525
- Rapid kinetics of Na+ binding to thrombin.J. Biol. Chem. 2006; 281 (17074754): 40049-40056
- Effects of diffusion on free precession in nuclear magnetic resonance experiments.Phys. Rev. 1954; 94: 630-638
- Modified spin-echo method for measuring nuclear relaxation times.Rev. Sci. Instrum. 1958; 29: 688-691
- Processing of x-ray diffraction data collected by oscillation methods.Methods Enzymol. 1997; 276 (27754618): 307-326
- Collaborative Computational Project, number 4: providing programs for protein crystallography.Methods Enzymol. 1997; 277 (18488327): 620-633
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Stereochemical quality of protein structure coordinates.Proteins. 1992; 12 (1579569): 345-364
- Molecular dissection of Na+ binding to thrombin.J. Biol. Chem. 2004; 279 (15152000): 31842-31853
- Essential role of conformational selection in ligand binding.Biophys. Chem. 2014; 186 (24113284): 13-21
- Thrombin is a Na+-activated enzyme.Biochemistry. 1992; 31 (1445907): 11721-11730
- Rigidification of the autolysis loop enhances Na+ binding to thrombin.Biophys. Chem. 2011; 159 (21536369): 6-13
- Evidence of the E*–E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa.J. Phys. Chem. B. 2010; 114 (20809655): 16125-16130
- Conformational selection is a dominant mechanism of ligand binding.Biochemistry. 2013; 52 (23947609): 5723-5729
- The anticoagulant thrombin mutant W215A/E217A has a collapsed primary specificity pocket.J. Biol. Chem. 2004; 279 (15252033): 39824-39828
- ShereKhan: calculating exchange parameters in relaxation dispersion data from CPMG experiments.Bioinformatics. 2013; 29 (23698862): 1819-1820
- Mutation of W215 compromises thrombin cleavage of fibrinogen, but not of PAR-1 or protein C.Biochemistry. 2000; 39 (10891092): 8095-8101
- Engineering thrombin for selective specificity toward protein C and PAR1.J. Biol. Chem. 2010; 285 (20404340): 19145-19152
- Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA.EMBO J. 1997; 16 (9305622): 4797-4805
- Structural mapping of the active site specificity determinants of human tissue-type plasminogen activator: implications for the design of low molecular weight substrates and inhibitors.J. Biol. Chem. 1997; 272 (9268299): 21713-21719
- Effects of deletion of streptokinase residues 48–59 on plasminogen activation.Protein Eng. 2002; 15 (12456874): 753-761
- Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation.Nature. 2003; 425 (14523451): 535-539
- An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides.Nat. Chem. Biol. 2014; 10 (24859116): 567-573
- Sodium-induced population shift drives activation of thrombin.Sci. Rep. 2020; 10 (31974511): 1086
- Induced fit is a special case of conformational selection.Biochemistry. 2017; 56 (28494585): 2853-2859
Article info
Publication history
Footnotes
Author contributions—E. A. R., P. S. G., S. K. K., G. T. D., C. F., and E. D. C. conceptualization; E. A. R., P. S. G., Z. C., S. K. K., G. T. D., C. F., and E. D. C. data curation; E. A. R., P. S. G., Z. C., S. K. K., G. T. D., C. F., and E. D. C. formal analysis; E. A. R., P. S. G., S. K. K., G. T. D., and C. F. validation; E. A. R., P. S. G., Z. C., S. K. K., and G. T. D. investigation; E. A. R., P. S. G., S. K. K., and G. T. D. methodology; E. A. R., C. F., and E. D. C. writing-original draft; E. A. R., P. S. G., Z. C., S. K. K., G. T. D., C. F., and E. D. C. writing-review and editing; C. F. and E. D. C. supervision; C. F. and E. D. C. funding acquisition.
Funding and additional information—This work was supported in part by National Institutes of Health Grants HL049413, HL139554, and HL147821 (to E. D. C.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: PDB
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy