Introduction
Results and discussion
Phospholipid transfer activity of VAT-1

Structure of VAT-1
Data collection | |
Space group | P212121 |
Cell dimensions | |
a, b, c (Å) | 67.16, 131.72, 174.03 |
α, β, γ (°) | 90.0, 90.0, 90.0 |
Data set | |
Wavelength (Å) | 1.00000 |
Resolution range (Å) | 50.0–2.20 |
Outer shell (Å) | 2.25–2.20 |
Rmerge | 0.080 (1.042) |
Rpim | 0.034 (0.441) |
I/σI | 11.2 (1.6) |
Completeness (%) | 99.7 (94.6) |
Redundancy | 3.4 (3.3) |
CC½ | 0.998 (0.648) |
Refinement | |
Resolution (Å) | 50–2.20 |
No. reflections | 78589 |
R/Rfree | 0.222/0.254 |
No. atoms | |
Protein | 9985 |
Nitrate ion | 32 |
Water | 158 |
B-factors (Å2) | |
Protein | 59.1 |
Nitrate ion | 87.7 |
Water | 56.8 |
Root-mean-square deviations | |
Bond lengths (Å) | 0.007 |
Bond angles (°) | 1.3 |
PDB accession code | 6K9Y |

Putative phospholipid-binding site

The extruded loop is responsible for phospholipid transfer and membrane binding

Twin Trp in the loop is inserted into the acidic membrane upon VAT-1 binding

Conclusion
Experimental procedures
Construction of expression plasmids
Protein expression and purification
Liposomes
Phospholipid transfer assay
Liposome floatation assay
Crystallization and X-ray crystallography
CD measurements
In silico docking
Yeast strain and media
Isolation of mitochondria
PS transfer assay with mitochondria
Immunoblotting
Trp fluorescence measurements
Author contributions
Acknowledgments
Supplementary Material
References
- Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae.Genetics. 2012; 190 (22345606): 317-349
- Phospholipid synthesis and transport in mammalian cells.Traffic. 2015; 16 (25243850): 1-18
- Intramitochondrial phospholipid trafficking.Biochim. Biophys. Acta. 2017; 1862 (27542541): 81-89
- Organelle contact zones as sites for lipid transfer.J. Biochem. 2019; 165 (30371789): 115-123
- Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells.Biochim. Biophys. Acta. 2013; 1831 (22960354): 543-554
- Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1.J. Biol. Chem. 2012; 287 (22984266): 36744-36755
- Role of intra- and inter-mitochondrial membrane contact sites in yeast phospholipid biogenesis.Adv. Exp. Med. Biol. 2017; 997 (28815526): 121-133
- Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein.Science. 2012; 338 (23042293): 815-818
- TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid.Cell Metab. 2013; 18 (23931759): 287-295
- Phosphatidylserine transport by Ups2–Mdm35 in respiration-active mitochondria.J. Cell Biol. 2016; 214 (27354379): 77-88
- Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria.Nat. Commun. 2015; 6 (26235513)7922
- MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria.J. Cell Biol. 2016; 213 (27241913): 525-534
- Nonvesicular lipid transfer from the endoplasmic reticulum.Cold Spring Harb. Perspect. Biol. 2012; 4 (23028121)a013300
- An ER–mitochondria tethering complex revealed by a synthetic biology screen.Science. 2009; 325 (19556461): 477-481
- Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER–mitochondria contact sites.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (29078410): E9502-E9511
- Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES.J. Cell Biol. 2018; 217 (29279306): 959-974
- A phospholipid transfer function of ER–mitochondria encounter structure revealed in vitro.Sci. Rep. 2016; 6 (27469264)30777
- ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons.Science. 2017; 358 (29097544): 623-630
- VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles.Neuron. 1989; 2 (2483112): 1265-1273
- Involvement of VAT-1 in phosphatidylserine transfer from the endoplasmic reticulum to mitochondria.Traffic. 2015; 16 (26394711): 1306-1317
- VAT-1 from Torpedo is a membranous homologue of zeta crystallin.FEBS Lett. 1993; 315 (8416819): 91-94
- Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function.J. Cell Sci. 2006; 119 (17105775): 4913-4925
- Proteome of acidic phospholipid-binding proteins: spatial and temporal regulation of Coronin 1A by phosphoinositides.J. Biol. Chem. 2010; 285 (20032464): 6781-6789
- An essential role for phospholipase D in the recruitment of vesicle amine transport protein-1 to membranes in human neutrophils.Biochem. Pharmacol. 2011; 81 (20858461): 144-156
- Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids.Biochemistry. 1987; 26 (3030403): 39-45
- DISOPRED3: precise disordered region predictions with annotated protein-binding activity.Bioinformatics. 2015; 31 (25391399): 857-863
- Comparison of super-secondary structures in proteins.J. Mol. Biol. 1973; 76 (4737475): 241-256
- Dali server update.Nucleic Acids Res. 2016; 44 (27131377): W351-W355
- Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1.J. Struct. Biol. 2011; 176 (21820057): 112-118
- AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem. 2010; 31 (19499576): 455-461
- Advances on the transfer of lipids by lipid transfer proteins.Trends Biochem. Sci. 2017; 42 (28579073): 516-530
- Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method.J. Biomol. NMR. 2009; 43 (19140010): 145-150
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Crystallography & NMR system: a new software suite for macromolecular structure determination.Acta Crystallogr. D Biol. Crystallogr. 1998; 54 (9757107): 905-921
- Structure validation by Cα geometry: φ,ψ and Cβ deviation.Proteins. 2003; 50 (12557186): 437-450
- Elevated recombination rates in transcriptionally active DNA.Cell. 1989; 56 (2645056): 619-630
- Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1998
Article info
Publication history
Footnotes
This work was supported by Japan Society of the Promotion of Science KAKENHI Grants 16K21473 (to Y. W.), 15H05595 and 17H06414 (to Y. T.), and 15H05705 and 22227003 (to T. E.); a Japan Science and Technology Agency (JST) CREST Grant JPMJCR12M (to T. E.); a grant from the Takeda Science Foundation (to T. E.); and funds from the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S8.
The atomic coordinates and structure factors (code 6K9Y) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy