- epidermal growth factor receptor (EGFR)
- Smad ubiquitination regulatory factor 2 (SMURF2)
- ubiquitin-conjugating enzyme H5 (UBCH5)
- protective ubiquitination
- tyrosine kinase inhibitor (TKI) resistance
- E3 ubiquitin ligase
- ubiquitylation (ubiquitination)
- receptor regulation
- tyrosine-protein kinase (tyrosine kinase)
- Argiris A.
- Duffy A.G.
- Kummar S.
- Simone N.L.
- Arai Y.
- Kim S.W.
- Rudy S.F.
- Kannabiran V.R.
- Yang X.
- Jang M.
- Chen Z.
- Suksta N.
- Cooley-Zgela T.
- Ramanand S.G.
- Ahsan A.
- et al.
Results
EGFR (L858R+T790M) is a preferred substrate for SMURF2-UBCH5-mediated ubiquitination

Acetylation mimicking K1037Q mutation in L+T mutant EGFR background makes the stable receptor vulnerable to TKI-mediated degradation

EGFR surface density depends on SMURF2 expression
EGF treatment promotes EGFR-SMURF2 membrane coclustering

SMURF2 levels dictate TKI sensitivity in lung cancer cells

Alteration of SMURF2-UBCH5 protein–protein interaction affects mutant EGFR levels

Discussion
Materials and methods
Reagents
Cell cultures
Protein analyses
Clonogenic cell survival assay
Coupled transcription and translation of UBCH5A
In vitro ubiquitination assay
MS
Labeling
STORM imaging and reconstruction
Measuring receptor density
Colocalization
Statistics
Data availability
Acknowledgments
Supplementary Material
References
- Epidermal growth factor receptor mutations in lung cancer.Nat. Rev. Cancer. 2007; 7 (17318210): 169-181
- Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations.J. Clin. Oncol. 2008; 26 (18309959): 1182-1184
- Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC.N. Engl. J. Med. 2020; 382 (31751012): 41-50
- Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer.Br. J. Cancer. 2019; 121 (31564718): 725-737
- The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.Proc. Natl. Acad. Sci. U S A. 2008; 105 (18227510): 2070-2075
- Novel mutant-selective EGFR kinase inhibitors against EGFR T790M.Nature. 2009; 462 (20033049): 1070-1074
- AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.N. Engl. J. Med. 2015; 372 (25923549): 1689-1699
- Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M.Nat. Med. 2015; 21 (25939061): 560-562
- Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance.Cancer Res. 2008; 68 (18632637): 5827-5838
- Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab.BMC Med. 2012; 10 (22436374): 28
- Synergistic effects of gemcitabine and gefitinib in the treatment of head and neck carcinoma.Cancer Res. 2006; 66 (16424033): 981-988
- Effect of epidermal growth factor receptor inhibitor class in the treatment of head and neck cancer with concurrent radiochemotherapy in vivo.Clin. Cancer Res. 2007; 13: 2512-2518
- Role of epidermal growth factor receptor degradation in gemcitabine-mediated cytotoxicity.Oncogene. 2007; 26 (17146438): 3431-3439
- Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization.Cancer Res. 2009; 69 (19509222): 5108-5114
- Role of epidermal growth factor receptor degradation in cisplatin-induced cytotoxicity in head and neck cancer.Cancer Res. 2010; 70 (20215522): 2862-2869
- Early tumor progression associated with enhanced EGFR signaling with bortezomib, cetuximab, and radiotherapy for head and neck cancer.Clin. Cancer Res. 2011; 17 (21750205): 5755-5764
- Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors.Neoplasia. 2012; 14 (22952420): 670-677
- Destabilization of the epidermal growth factor receptor (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and receptor dimerization.J. Biol. Chem. 2013; 288 (23897823): 26879-26886
- Effect of erlotinib on epidermal growth factor receptor and downstream signaling in oral cavity squamous cell carcinoma.Head Neck. 2013; 35 (22907806): 1323-1330
- Differential protein stability of EGFR mutants determines responsiveness to tyrosine kinase inhibitors.Oncotarget. 2016; 7 (27612423): 68597-68613
- EGF receptor trafficking: consequences for signaling and cancer.Trends Cell Biol. 2014; 24 (24295852): 26-34
- Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1.Mol. Cell. 1999; 4 (10635327): 1029-1040
- The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR.PLoS One. 2011; 6 (21949687): e23936
- UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation.J. Biol. Chem. 2014; 289 (24344129): 3026-3039
- Regulation of EGFR protein stability by the HECT-type ubiquitin ligase SMURF2.Neoplasia. 2011; 13 (21750651): 570-578
- Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain.Mol. Cell. 2005; 19 (16061177): 297-308
- Identification of residues in the nucleotide binding site of the epidermal growth factor receptor/kinase.J. Biol. Chem. 1985; 260 (2985580): 5205-5208
- Antibodies to the ATP-binding site of the human epidermal growth factor (EGF) receptor as specific inhibitors of EGF-stimulated protein-tyrosine kinase activity.Eur. J. Biochem. 1986; 158 (3015611): 245-253
- Activation of the EGF receptor by ligand binding and oncogenic mutations: the rotation model.Cells. 2017; 6: 13
- Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor.J. Cell Biol. 2010; 189 (20513767): 871-883
- Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability.Bioessays. 2005; 27 (15770681): 408-415
- Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure.Mol. Cell. Biol. 2008; 28 (17938198): 227-236
- Acetylation of p53 inhibits its ubiquitination by Mdm2.J. Biol. Chem. 2002; 277 (12421820): 50607-50611
- Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat. Methods. 2006; 3 (16896339): 793-795
- Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes.Angew Chem. Int. Ed. Engl. 2008; 47 (18646237): 6172-6176
- EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer.Int. J. Radiat. Biol. 2016; 92: 716-723
- The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint.J. Cell Biol. 2008; 183 (18852296): 267-277
- The WW-HECT protein Smurf2 interacts with the docking protein NEDD9/HEF1 for Aurora A activation.Cell Division. 2010; 5 (20825672): 22
- KRAS protein stability is regulated through SMURF2: UBCH5 complex-mediated beta-TrCP1 degradation.Neoplasia. 2014; 16: 115-IN115
- Identification of an unconventional E3 binding surface on the UbcH5 ∼ Ub conjugate recognized by a pathogenic bacterial E3 ligase.Proc. Natl. Acad. Sci. U S A. 2010; 107 (20133640): 2848-2853
- Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization.Cell. 2012; 149 (22579287): 860-870
- Sulfiredoxin promotes colorectal cancer cell invasion and metastasis through a novel mechanism of enhancing EGFR signaling.Mol. Cancer Res. 2015; 13 (26290602): 1554-1566
- Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain.Mol. Cell. 2006; 21 (16543144): 737-748
- A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20.Nat. Med. 2012; 18 (22231558): 227-234
- Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.Mol. Cell. 2000; 6 (11163210): 1365-1375
- Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation.J. Immunol. 2014; 192 (24729608): 4758-4764
- Smurf2-mediated stabilization of DNA topoisomerase IIalpha controls genomic integrity.Cancer Res. 2017; 77 (28611047): 4217-4227
- E2 enzymes: more than just middle men.Cell Res. 2016; 26 (27002219): 423-440
- Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo.Clin. Cancer Res. 2004; 10: 691-700
- Isoforms of RNF128 regulate the stability of mutant P53 in Barrett's esophageal cells.Gastroenterology. 2020; 158: 583-597
- Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes.Elife. 2017; 6: e19891
- Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting.PLoS One. 2012; 7 (22384026): e31457
- The PRIDE database and related tools and resources in 2019: improving support for quantification data.Nucleic Acids Res. 2019; 47 (30395289): D442-D450
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—P. R., S. V., T. S. L., M. K. N., and D. R. resources; P. R., K. R., A. A., U. S. A., S. S., V. B., M. K. N., and D. R. data curation; P. R., K. R., A. A., U. S. A., S. S., V. B., S. V., T. S. L., M. K. N., and D. R. formal analysis; P. R., K. R., A. A., U. S. A., S. S., V. B., and D. R. validation; P. R., K. R., A. A., U. S. A., S. S., S. V., M. K. N., and D. R. investigation; P. R., K. R., A. A., U. S. A., S. S., and D. R. visualization; P. R., K. R., A. A., U. S. A., S. S., V. B., S. V., M. K. N., and D. R. methodology; P. R., T. S. L., and D. R. writing-original draft; K. R., S. V., T. S. L., M. K. N., and D. R. conceptualization; K. R., V. B., S. V., and D. R. software; A. A., U. S. A., S. S., V. B., S. V., M. K. N., and D. R. writing-review and editing; S. V., T. S. L., M. K. N., and D. R. supervision; S. V. and D. R. funding acquisition; S. V., M. K. N., and D. R. project administration.
Funding and additional information—This work was supported in part by grants from the National Institutes of Health R01CA160981 (to D. R.), R01CA131290 (to M. K. N.), and R01GM110052 (to S. V.). R. K.'s postdoctoral fellowship is funded by M-Cube and the Fast-Forward Innovation Program at the University of Michigan. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for Krishnan Raghunathan: Dept. of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Present address for Aarif Ahsan: Bristol-Myers Squibb, Lawrence Township, New Jersey, USA.
Present address for Uday Sankar Allam: Dept. of Biotechnology, Vikrama Simhapuri University, India.
Present address for Shirish Shukla: The Janssen Pharmaceutical Company, Spring House, Pennsylvania, USA.
Abbreviations—The abbreviations used are: EGFR
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy