Results
EspG3 forms a complex with PE5–PPE4, and binding is conserved across species

Overall structure of PE5mt–PPE4mt–EspG3mm
PE5mt–PPE4mt–EspG3mm | PE5mt–PPE4mt–EspG3mm | |
---|---|---|
PDB code | 6UUJ | 6VHR |
Data collection | ||
Wavelength (Å) | 1.000 | 1.000 |
Space group | P212121 | I422 |
Cell dimensions | ||
a, b, c (Å) | 72.26, 158.63, 209.31 | 219.14, 219.14, 104.44 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 |
Resolution (Å) | 39.51–3.00 (3.08–3.00) | 35.73–3.30 (3.39–3.30) |
Rsym | 0.131 (1.56) | 0.087 (2.18) |
Rpim | 0.070 (0.848) | 0.029 (0.524) |
CC1/2 | 0.998 (0.590) | 0.999 (0.597) |
I/σ | 9.45 (1.14) | 15.70 (1.31) |
Completeness (%) | 99.1 (99.5) | 99.8 (100) |
Multiplicity | 4.2 (4.4) | 10.3 (9.5) |
Refinement | ||
Resolution (Å) | 39.51–3.00 | 35.73–3.30 |
No. reflections (total/free) | 48463/2462 | 19335/928 |
Rwork/Rfree | 0.266/0.303 | 0.248/0.266 |
Number of atoms | ||
Protein | 14,535 | 3643 |
Ligand/ion | 0 | 0 |
Water | 4 | 0 |
B-factors | ||
Protein | 101.6 | 173.2 |
Water | 70.6 | |
All atoms | 101.6 | 173.2 |
Wilson B | 87.9 | 147.3 |
RMSD | ||
Bond lengths (Å) | 0.002 | 0.002 |
Bond angles (°) | 0.53 | 0.503 |
Ramachandran distribution (%) | ||
Favored | 96.42 | 91.34 |
Allowed | 3.58 | 8.04 |
Outliers | 0 | 0.62 |
Rotamer outliers (%) | 0.28 | 0 |
Clashscore | 7.02 | 6.94 |
MolProbity score | 1.62 | 1.89 |
PE5mt | PPE4mt | EspG3mm | |
---|---|---|---|
Aligned to 6UUJ copy 1 | |||
6UUJ copy 2 | 0.2 | 0.3 | 0.4 |
6UUJ copy 3 | 0.4 | 0.2 | 0.4 |
6UUJ copy 4 | 0.3 | 0.2 | 0.4 |
6VHR | 0.4 | 0.5 | 0.6 |
Aligned to 6UUJ copy 2 | |||
6UUJ copy 1 | 0.2 | 0.3 | 0.4 |
6UUJ copy 3 | 0.3 | 0.3 | 0.3 |
6UUJ copy 4 | 0.3 | 0.3 | 0.4 |
6VHR | 0.4 | 0.5 | 0.6 |
Aligned to 6UUJ copy 3 | |||
6UUJ copy 1 | 0.4 | 0.2 | 0.4 |
6UUJ copy 2 | 0.3 | 0.3 | 0.3 |
6UUJ copy 4 | 0.4 | 0.3 | 0.4 |
6VHR | 0.5 | 0.5 | 0.6 |
Aligned to 6UUJ copy 4 | |||
6UUJ copy 1 | 0.3 | 0.2 | 0.4 |
6UUJ copy 2 | 0.3 | 0.3 | 0.4 |
6UUJ copy 3 | 0.3 | 0.3 | 0.4 |
6VHR | 0.4 | 0.5 | 0.7 |

PE25mt–PPE41mt–EspG5mt (PDB code 4KXR) | PE25mt–PPE41mt–EspG5mt (PDB code 4W4L) | PE8mt–PPE15mt–EspG5mt (PDB code 5XFS) | |
---|---|---|---|
PE5mt | 2.3 | 2.3 | 1.4 |
PPE4mt | 3.3 | 3.4 | 2.5 |
EspG3mm | 2.4 | 2.7 | 2.3 |
Interface between PPE4mt and EspG3mm

Mutations cause disruptions in the PPE4–EspG3 interface
Mutations | Maintains Interaction |
---|---|
PPE4 mutations | |
N127D | + |
F128R | − |
F129E | − |
N132E | + |
E140R | + |
EspG3 mutations | |
R87E | + |
R102E | + |
R208E | + |
E212R | − |
S231Y | − |
Structure of EspG3 in and out of heterotrimer complex

Comparison of ESX-3 and ESX-5 PE–PPE–EspG heterotrimers

Discussion
Experimental procedures
Bacterial strains and growth conditions
Expression and purification of PE5–PPE4–EspG3 heterotrimers
Crystallization, data collection, and structure solution
Density modification and original model
Size-exclusion chromatography with MALS
Sequence analysis
Structural analysis
SAXS data comparison and ab initio model reconstruction
Data availability
Supplementary Material
References
- Tuberculosis Fact Sheet 2019. World Health Organization, Geneva, Switzerland2019
- Systematic genetic nomenclature for type VII secretion systems.PLoS Pathog. 2009; 5 (19876390): e1000507
- ESX secretion systems: mycobacterial evolution to counter host immunity.Nat. Rev. Microbiol. 2016; 14 (27665717): 677-691
- Architecture of the mycobacterial type VII secretion system.Nature. 2019; 576 (31597161): 321-325
- The structure of the endogenous ESX-3 secretion system.Elife. 2019; 8 (31886769): e52983
- Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis.Nat. Microbiol. 2017; 2 (28394313): 17047
- Type VII secretion–mycobacteria show the way.Nat. Rev. Microbiol. 2007; 5 (17922044): 883-891
- General secretion signal for the mycobacterial type VII secretion pathway.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22733768): 11342-11347
- New insights into the mycobacterial PE and PPE proteins provide a framework for future research.Mol. Microbiol. 2020; 113 (31661176): 4-21
- PE and PPE genes: a tale of conservation and diversity.Adv. Exp. Med. Biol. 2017; 1019 (29116636): 191-207
- Specific chaperones for the type VII protein secretion pathway.J. Biol. Chem. 2012; 287 (22843727): 31939-31947
- Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25–PPE41 dimer.Mol. Microbiol. 2014; 94 (25155747): 367-382
- Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25275011): 14758-14763
- Structural basis of the PE–PPE protein interaction in Mycobacterium tuberculosis.J. Biol. Chem. 2017; 292 (28842489): 16880-16890
- Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite.Proc. Natl. Acad. Sci. U.S.A. 2007; 104 (17426153): 7015-7020
- Structural variability of EspG chaperones from mycobacterial ESX-1, ESX-3, and ESX-5 type VII secretion systems.J. Mol. Biol. 2019; 431 (30419243): 289-307
- CRYSOL: a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates.J. Appl. Crystallogr. 1995; 28: 768-773
- Inference of macromolecular assemblies from crystalline state.J. Mol. Biol. 2007; 372 (17681537): 774-797
- Shape complementarity at protein/protein interfaces.J. Mol. Biol. 1993; 234 (8263940): 946-950
- Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme.Proteins. 1998; 30 (<144::AID-PROT4>3.0.CO;2-N 9489922): 144-154
- Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis.J. Struct. Biol. 2015; 191 (26051906): 236-244
- Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism.Structure. 2015; 23 (25684576): 571-583
- A protein linkage map of the ESAT-6 secretion system 1 (ESX-1) of Mycobacterium tuberculosis.Microbiol. Res. 2009; 164 (17433643): 253-259
- A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli.J. Struct. Biol. 2013; 183 (23820381): 354-362
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- MolProbity: more and better reference data for improved all-atom structure validation.Protein Sci. 2018; 27 (29067766): 293-315
- The EMBL-EBI search and sequence analysis tools APIs in 2019.Nucleic Acids Res. 2019; 47 (30976793): W636-W641
- Deciphering key features in protein structures with the new ENDscript server.Nucleic Acids Res. 2014; 42 (24753421): W320-W324
- Improvements to the APBS biomolecular solvation software suite.Protein Sci. 2018; 27 (28836357): 112-128
- Benchmarking fold detection by DaliLite v.Bioinformatics. 2019; 35 (31263867): 5326-5327
- Determination of domain structure of proteins from X-ray solution scattering.Biophys. J. 2001; 80 (11371467): 2946-2953
- Uniqueness of ab initio shape determination in small-angle scattering.J. Appl. Crystallogr. 2003; 36: 860-864
- DALI and the persistence of protein shape.Protein Sci. 2020; 29 (31606894): 128-140
- UCSF ChimeraX: Meeting modern challenges in visualization and analysis.Protein Sci. 2018; 27 (28710774): 14-25
- Linking crystallographic model and data quality.Science. 2012; 336: 1030-1033
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—Z. A. W., C. T. C., and K. V. K. formal analysis; Z. A. W. and K. V. K. validation; Z. A. W., C. T. C., W. A. C., N. K., and K. V. K. investigation; Z. A. W. and K. V. K. visualization; Z. A. W. writing-original draft; C. T. C., N. K., and K. V. K. writing-review and editing; N. K. and K. V. K. conceptualization; K. V. K. supervision; K. V. K. funding acquisition.
Funding and additional information—This work was supported by an Institutional Development Award from the NIGMS, National Institutes of Health, by National Institutes of Health Grants P20GM103486 and P30GM110787, and by the NIAID, National Institutes of Health Grant R01AI119022 (to K. V. K.). W.A.C. was supported by National Science Foundation Research Experiences for Undergraduates Grant 1358627. Use of SER-CAT is supported by its member institutions and Equipment Grants S10_RR25528 and S10_RR028976 from the National Institutes of Health. Use of the Advanced Photon Source was supported by the U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences under Contract W-31-109-Eng-38. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for William A. Ciocca: Dept. of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, USA.
Abbreviations—The abbreviations used are: ESX system
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy