
- Butterfield R.J.
- Foley A.R.
- Dastgir J.
- Asman S.
- Dunn D.M.
- Zou Y.
- Hu Y.
- Donkervoort S.
- Flanigan K.M.
- Swoboda K.J.
- Winder T.L.
- Weiss R.B.
- Bönnemann C.G.
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.
Results
The X-ray crystal structure of the collagen VI α3 N2 VWA domain reveals a pronounced structural conservation among N-terminal α3 chain VWA domains
Parameter | Value(s) for collagen VI |
---|---|
Data collection | |
Space group | P1 |
Cell dimensions | |
a, b, c (Å) | 36.64, 40.54, 57.11 |
α, β, γ (°) | 83.34, 76.80, 79.56 |
Resolution (Å) | 55.43–2.2 (2.27–2.2) |
Rsym or Rmerge | 0.22 (1.24) |
I/σI | 4.6 (2.4) |
Completeness (%) | 96.5 (96.5) |
Redundancy | 3.4 (3.2) |
Refinement | |
Resolution (Å) | 55.43–2.2 |
No. reflections | 15,370 (1562) |
No. of reflections used for Rfree | 761 (76) |
Rwork/Rfree (%) | 20.0/25.7 |
No. of atoms | 3019 |
Protein | 2915 |
Water | 104 |
B-factors | |
Protein | 26.86 |
Water | 29.74 |
Ramachandran | |
Favored (%) | 96.0 |
Allowed (%) | 3.5 |
Outliers (%) | 0.5 |
RMSD | |
Bond lengths (Å) | 0.006 |
Bond angles (°) | 0.65 |

The N2 VWA domain harboring BM and UCMD mutations exhibit different self-association propensities and affect cellular secretion levels
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.

The double VWA domain construct N5-N4 samples a definable set of structural states



The quadruple VWA domain construct, N6-N3, samples a diverse conformational ensemble and is structurally heterogeneous



Discussion
The location of point mutations in the structure of the N2 VWA domain determines how the local fold is affected and indicates the severity of the resulting myopathy
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.
- Lampe A.K.
- Dunn D.M.
- von Niederhausern A.C.
- Hamil C.
- Aoyagi A.
- Laval S.H.
- Marie S.K.
- Chu M.-L.
- Swoboda K.
- Muntoni F.
- Bonnemann C.G.
- Flanigan K.M.
- Bushby K.M.D.
- Weiss R.B.
The structural heterogeneity of the modular VWA α3 chain could provide a mechanism for adapting to binding interfaces and modulating stiffness in tissues
Experimental procedures
PCR amplification of the collagen VI α3 chain VWA domains
Recombinant expression and purification of collagen VI α3 chain VWA domains
Transient transfection of HEK-293 EBNA cells
SDS-PAGE and Western blotting
Establishment of crystallography trials
Crystallization, data collection, and structure determination
SAXS measurements and data reduction
Negative-stain EM
Data availability
Acknowledgments
Supplementary Material
References
- Structure and macromolecular organization of type VI collagen.Ann. N. Y. Acad. Sci. 1985; 460 (3938630): 25-37
- Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network.J. Cell Biol. 1988; 107 (3182942): 1995-2006
- Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen.J. Biol. Chem. 1997; 272 (9334230): 26522-26529
- Collagen VI is a basement membrane component that regulates epithelial cell-fibronectin interactions.Matrix Biol. 2011; 30 (21406227): 195-206
- Biglycan and decorin bind close to the N-terminal region of the collagen VI triple helix.J. Biol. Chem. 2001; 276 (11259413): 18947-18952
- Collagen VI at a glance.J. Cell Sci. 2015; 128 (26377767): 3525-3531
- Collagen VI related muscle disorders.J. Med. Genet. 2005; 42 (16141002): 673-685
- Genetic localization of Bethlem myopathy.Neurology. 1996; 46 (8618682): 779-782
- Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures.Brain. 1999; 122: 649-655
- Frameshift mutation in the collagen VI gene causes Ullrich's disease.Ann. Neurol. 2001; 50 (11506412): 261-265
- Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy.Am. J. Hum. Genet. 2002; 70 (11992252): 1446-1458
- Three novel collagen VI chains with high homology to the alpha3 chain.J. Biol. Chem. 2008; 283 (18276594): 10658-10670
- Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI).J. Biol. Chem. 2008; 283 (18400749): 20170-20180
- A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization.J. Biol. Chem. 1983; 258: 9504-9509
- Further characterization of the three polypeptide chains of bovine and human short-chain collagen (intima collagen).Eur. J. Biochem. 1983; 133 (6852033): 39-46
- Chemical and biological evolution of a nucleotide-binding protein.Nature. 1974; 250 (4368490): 194-199
- Structural diversity and domain composition of a unique collagenous fragment (intima collagen) obtained from human placenta.Biochem. J. 1983; 211 (6870834): 295-302
- A new twist in the collagen story–the type VI segmented supercoil.EMBO J. 2001; 20 (11157744): 372-376
- C-terminal proteolysis of the collagen VI alpha3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes.J. Biol. Chem. 2019; 294 (31346034): 13769-13780
- Collagen VI, conformation of A-domain arrays and microfibril architecture.J. Biol. Chem. 2011; 286 (21908605): 40266-40275
- Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales.Acta Biomater. 2017; 52 (27956360): 21-32
- Heterogeneity of collagen VI microfibrils: structural analysis of non-collagenous regions.J. Biol. Chem. 2016; 291 (26742845): 5247-5258
- A structure of a collagen VI VWA domain displays N and C termini at opposite sides of the protein.Structure. 2014; 22 (24332716): 199-208
- Position of glycine substitutions in the triple helix of COL6A1, COL6A2, and COL6A3 is correlated with severity and mode of inheritance in collagen VI myopathies.Hum. Mutat. 2013; 34 (24038877): 1558-1567
- Missense mutation in a von Willebrand factor type A domain of the alpha 3(VI) collagen gene (COL6A3) in a family with Bethlem myopathy.Hum. Mol. Genet. 1998; 7 (9536084): 807-812
- Molecular consequences of dominant Bethlem myopathy collagen VI mutations.Ann. Neurol. 2007; 62 (17886299): 390-405
- Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy.J. Med. Genet. 2005; 42 (15689448): 108-120
- Two novel COL6A3 mutations disrupt extracellular matrix formation and lead to myopathy from Ullrich congenital muscular dystrophy and Bethlem myopathy spectrum.Gene. 2018; 672 (29894794): 165-171
- A Bethlem myopathy Gly to Glu mutation in the von Willebrand factor A domain N2 of the collagen alpha3(VI) chain interferes with protein folding.FASEB J. 2000; 14 (10744632): 761-768
- Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere.Mol. Biol. Cell. 2002; 13 (12388743): 3369-3387
- Automated pipeline for purification, biophysical and X-ray analysis of biomacromolecular solutions.Sci. Rep. 2015; 5 (26030009): 10734
- Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing.Biophys. J. 1999; 76: 2879-2886
- Correlation map, a goodness-of-fit test for one-dimensional X-ray scattering spectra.Nat. Methods. 2015; 12 (25849637): 419-422
- The I-TASSER Suite: protein structure and function prediction.Nat. Methods. 2015; 12 (25549265): 7-8
- Structural and functional features of a collagen-binding matrix protein from the mussel byssus.Nat. Commun. 2014; 5 (24569701): 3392
- Global rigid body modelling of macromolecular complexes against small-angle scattering data.Biophys J. 2005; 89 (15923225): 1237-1250
- Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.IUCrJ. 2015; 2 (25866658): 207-217
- Structural characterization of flexible proteins using small-angle X-ray scattering.J. Am. Chem. Soc. 2007; 129 (17411046): 5656-5664
- Ambiguity assessment of small-angle scattering curves from monodisperse systems.Acta Crystallogr. D Biol. Crystallogr. 2015; 71 (25945570): 1051-1058
- Determination of domain structure of proteins from X-ray solution scattering.Biophys. J. 2001; 80 (11371467): 2946-2953
- New developments in the ATSAS program package for small-angle scattering data analysis.J. Appl. Crystallogr. 2012; 45 (25484842): 342-350
- The supramolecular organization of collagen VI microfibrils.J. Mol. Biol. 2003; 330 (12823969): 297-307
- The N-terminal N5 subdomain of the alpha 3(VI) chain is important for collagen VI microfibril formation.J. Biol. Chem. 2001; 276 (11027693): 187-193
- Structure of recombinant N-terminal globule of type VI collagen alpha 3 chain and its binding to heparin and hyaluronan.EMBO J. 1992; 11 (1425570): 4281-4290
- Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond.Matrix Biol. 2018; 71-72 (29277723): 348-367
- Characterization of recombinantly expressed matrilin VWA domains.Protein Expr. Purif. 2015; 107 (25462806): 20-28
- Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI.Proc. Natl. Acad. Sci. U S A. 2001; 98 (11381124): 7516-7521
- Exon skipping mutations in collagen VI are common and are predictive for severity and inheritance.Hum. Mutat. 2008; 29 (18366090): 809-822
- Large genomic deletions: a novel cause of Ullrich congenital muscular dystrophy.Ann. Neurol. 2011; 69 (21280092): 206-211
- Recessive COL6A2 C-globular missense mutations in Ullrich congenital muscular dystrophy: role of the C2a splice variant.J. Biol. Chem. 2010; 285 (20106987): 10005-10015
- Closely spaced multiple mutations as potential signatures of transient hypermutability in human genes.Hum. Mutat. 2009; 30: 1435-1448
- Evolution of von Willebrand factor A (VWA) domains.Biochem. Soc. Trans. 1999; 27 (10830113): 835-840
- Identification of domains responsible for von Willebrand factor type VI collagen interaction mediating platelet adhesion under high flow.J. Biol. Chem. 1999; 274 (9915842): 3033-3041
- Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis.J. Thromb. Haemost. 2009; 7 (19817991): 2096-2105
- DIALS: implementation and evaluation of a new integration package.Acta Crystallogr. D Struct. Biol. 2018; 74 (29533234): 85-97
- An introduction to data reduction: space-group determination, scaling and intensity statistics.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460446): 282-292
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Features and development of COOT.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- UCSF Chimera–a visualization system for exploratory research and analysis.J. Comput. Chem. 2004; 25 (15264254): 1605-1612
- Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY).J. Appl. Crystallogr. 2015; 48 (25844078): 431-443
- Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments.Nat. Protoc. 2016; 11 (27711050): 2122-2153
- A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation.Comput. Phys. Commun. 2008; 178 (18196178): 105-120
- Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII.J. Synchrotron Radiat. 2015; 22 (25723929): 273-279
- Integrated beamline control and data acquisition for small-angle X-ray scattering at the P12 BioSAXS beamline at PETRAIII storage ring DESY.J. Synchrotron Radiat. 2018; 25 (29714204): 906-914
- Automated acquisition and analysis of small angle X-ray scattering data.Nucl. Instrum. Methods Phys. Res. 2012; 689: 52-59
- ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.J. Appl. Crystallogr. 2017; 50 (28808438): 1212-1225
- CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data.Bioinformatics. 2018; 34 (29300836): 1944-1946
- A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.IUCrJ. 2015; 2 (25995844): 352-360
- Determination of the regularization parameter in indirect-transform methods using perceptual criteria.J. Appl. Crystallogr. 1992; 25: 495-503
- Automated electron microscope tomography using robust prediction of specimen movements.J. Struct. Biol. 2005; 152 (16182563): 36-51
- High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE.J. Vis. Exp. 2017;
- A Bayesian view on cryo-EM structure determination.J. Mol. Biol. 2012; 415 (22100448): 406-418
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—H. S.-D., J. M. G., C. M. J., C. D. F., and P. M. data curation; H. S.-D., J. M. G., C. M. J., U. B., D. I. S., J. M. W., E. B., M. P., and R. W. formal analysis; H. S.-D., J. M. G., C. M. J., E. B., M. P., and R. W. validation; H. S.-D., J. M. G., C. M. J., C. D. F., P. M., L. E. B., and R. J. O. investigation; H. S.-D., J. M. G., C. M. J., C. D. F., and P. M. visualization; H. S.-D., J. M. G., C. M. J., L. E. B., R. J. O., M. P., and R. W. methodology; H. S.-D., J. M. G., and R. W. writing-original draft; H. S.-D., J. M. G., C. M. J., E. B., M. P., and R. W. writing-review and editing; J. M. G., C. M. J., D. I. S., and E. B. software; C. M. J., J. M. W., M. P., and R. W. conceptualization; C. M. J., L. E. B., U. B., D. I. S., R. J. O., E. B., M. P., and R. W. resources; C. M. J., L. E. B., U. B., D. I. S., R. J. O., J. M. W., E. B., M. P., and R. W. supervision; C. M. J., D. I. S., R. J. O., M. P., and R. W. funding acquisition; M. P. and R. W. project administration.
Funding and additional information—This study was supported by the German Research Foundation Grants SFB 829-B2 and FOR 2722-B1 (to M. P. and R. W.) and Grant SFB 829-B11 (to U. B.), and by a UK Medical Research Council Grant MR/K018779/1 (to L. E. B. and R. J. O). Portions of this work was also supported by iNEXT Grant 653706 (to C. M. J. and D. I. S.), funded by the Horizon 2020 program of the European Union (PID: 2861) using the Structural Audit program and an iNEXT proposal ID 5602 (to H. S. D. and R. W.). Crystals were grown in the Cologne Crystallization Facility (C2f.uni-koeln.de; grant no. INST 216/682-1 FUGG from the German Research Foundation).
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: UCMD
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy