- Lynch T.J.
- Bell D.W.
- Sordella R.
- Gurubhagavatula S.
- Okimoto R.A.
- Brannigan B.W.
- Harris P.L.
- Haserlat S.M.
- Supko J.G.
- Haluska F.G.
- Louis D.N.
- Christiani D.C.
- Settleman J.
- Haber D.A.
Results
Quantitative imaging FRET microscopy

Near full-length EGFR forms ligand-independent oligomers at physiological plasma-membrane concentrations

Proteins | (EGF) (nm) | Kd (molecules/μm2) | (95% CI) | E˜ | (95% CI) |
---|---|---|---|---|---|
EGFR | 0 | 156 | (49–339) | 0.35 | (0.28–0.41) |
HER2 | 0 | ND | (ND) | 0.29 | (0.27–0.31) |
EGFR + HER2 | 0 | ND | (ND) | 0.26 | (0.24–0.28) |
EGFR | 100 | ND | (ND) | 0.29 | (0.26–0.32) |
EGFR-L858R | 0 | 27 | (0–190) | 0.37 | (0.26–0.48) |
IgG-Fc/EGFR chimera | 0 | ND | (<21) | 0.29 | (0.27–0.31) |
EGFR-I706Q | 0 | 65 | (8–183) | 0.46 | (0.39–0.53) |
EGFR-V948R | 0 | 364 | (212–573) | 0.70 | (0.63–0.77) |
HER2 forms homo- and hetero-oligomers in the absence of ligand

EGF-independent EGFR phosphorylation increases with increasing EGFR expression but has no measurable effect on STAT or ERK phosphorylation

Asymmetric kinase dimer interface mutations alter but do not destabilize ligand-independent EGFR oligomer ensembles
- Zanetti-Domingues L.C.
- Korovesis D.
- Needham S.R.
- Tynan C.J.
- Sagawa S.
- Roberts S.K.
- Kuzmanic A.
- Ortiz-Zapater E.
- Jain P.
- Roovers R.C.
- Lajevardipour A.
- van Bergen En Henegouwen P.M.P.
- Santis G.
- Clayton A.H.A.
- Clarke D.T.
- et al.

Discussion
- Zanetti-Domingues L.C.
- Korovesis D.
- Needham S.R.
- Tynan C.J.
- Sagawa S.
- Roberts S.K.
- Kuzmanic A.
- Ortiz-Zapater E.
- Jain P.
- Roovers R.C.
- Lajevardipour A.
- van Bergen En Henegouwen P.M.P.
- Santis G.
- Clayton A.H.A.
- Clarke D.T.
- et al.
- Zanetti-Domingues L.C.
- Korovesis D.
- Needham S.R.
- Tynan C.J.
- Sagawa S.
- Roberts S.K.
- Kuzmanic A.
- Ortiz-Zapater E.
- Jain P.
- Roovers R.C.
- Lajevardipour A.
- van Bergen En Henegouwen P.M.P.
- Santis G.
- Clayton A.H.A.
- Clarke D.T.
- et al.
- Zanetti-Domingues L.C.
- Korovesis D.
- Needham S.R.
- Tynan C.J.
- Sagawa S.
- Roberts S.K.
- Kuzmanic A.
- Ortiz-Zapater E.
- Jain P.
- Roovers R.C.
- Lajevardipour A.
- van Bergen En Henegouwen P.M.P.
- Santis G.
- Clayton A.H.A.
- Clarke D.T.
- et al.
Materials and methods
Plasmid construction
Cell culture and transfection
Generation of monoclonal CHO cell lines expressing EGFR-EYFP
Vesiculation, image acquisition, and analysis
EGF stimulation of ERBB proteins in CHO cells
Data Availability
Acknowledgments
Supplementary Material
References
- Cell signaling by receptor tyrosine kinases.Cell. 2010; 141 (20602996): 1117-1134
- Molecularly targeted therapy for the treatment of head and neck cancer: A review of the ErbB family inhibitors.OncoTargets Ther. 2016; 9 (27110122): 1927-1943
- Regulation of the catalytic activity of the EGF receptor.Curr. Opin. Struct. Biol. 2011; 21 (21868214): 777-784
- Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor.Biochemistry. 1987; 26 (3494473): 1443-1451
- Self-phosphorylation of epidermal growth factor receptor: Evidence for a model of intermolecular allosteric activation.Biochemistry. 1987; 26 (3494472): 1434-1442
- Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells.Nature. 1976; 264 (187944): 26-31
- Nerve growth factor receptors on human melanoma cells in culture.Proc. Natl. Acad. Sci. U. S. A. 1977; 74 (265522): 565-569
- Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors.Proc. Natl. Acad. Sci. U. S. A. 1977; 74 (303774): 5046-5050
- Biological and molecular studies of the mitogenic effects of human epidermal growth factor.Symp. Soc. Dev. Biol. 1978; 35 (306135): 13-31
- Epidermal growth factor receptors increase during the differentiation of embryonal carcinoma cells.Nature. 1979; 281 (233127): 309-311
- Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth.Dev. Biol. 1983; 100 (6317490): 506-512
- MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF.Biochem. Biophys. Res. Commun. 1985; 128 (2986629): 898-905
- Increased EGF receptors on human squamous carcinoma cell lines.Br. J. Cancer. 1986; 53 (2420349): 223-229
- Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines.Mol. Endocrinol. 1987; 1 (3502607): 216-223
- Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells.Cell. 1987; 51 (3500791): 1063-1070
- Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells.Phys. Biol. 2011; 8 (066002) (21946082)
- Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy.Biophys. J. 2007; 93 (17468161): 684-698
- Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system.Proc. Natl. Acad. Sci. U. S. A. 2008; 105 (18165319): 112-117
- Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling.Biophys. J. 2002; 82 (11964230): 2415-2427
- Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain.J. Mol. Biol. 2001; 311 (11531336): 1011-1026
- Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis.Proc. Natl. Acad. Sci. U. S. A. 2010; 107 (20813958): 16524-16529
- Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis.Biophys. J. 2007; 93 (17496034): 1021-1031
- A general method to quantify ligand-driven oligomerization from fluorescence-based images.Nat. Methods. 2019; 16 (31110281): 493-496
- Direct visualization of single-molecule membrane protein interactions in living cells.PLoS Biol. 2018; 16 (30543635): e2006660
- Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N. Engl. J. Med. 2004; 350 (15118073): 2129-2139
- Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma.Front. Oncol. 2015; 5 (25688333): 5
- Actionable activating oncogenic ERBB2/HER2 transmembrane and juxtamembrane domain mutations.Cancer Cell. 2018; 34 (30449325): 792-806.e795
- Identification of a region within the ErbB2/HER2 intracellular domain that is necessary for ligand-independent association.J. Biol. Chem. 2002; 277 (12000754): 28468-28473
- EGFRvIV: A previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism.Oncogene. 2010; 29 (20676128): 5850-5860
- Lung cancer: Intragenic ERBB2 kinase mutations in tumours.Nature. 2004; 431 (15457249): 525-526
- An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors.Mol. Cell. 2003; 12 (14527402): 541-552
- More than the sum of the parts: Toward full-length receptor tyrosine kinase structures.IUBMB Life. 2019; 71 (31046201): 706-720
- The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand.Proc. Natl. Acad. Sci. U. S. A. 2005; 102 (16203964): 15024-15029
- Structure of the extracellular region of HER3 reveals an interdomain tether.Science. 2002; 297 (12154198): 1330-1333
- Conformational coupling across the plasma membrane in activation of the EGF receptor.Cell. 2013; 152 (23374349): 543-556
- EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization.Mol. Cell. 2003; 11 (12620237): 507-517
- An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor.Cell. 2006; 125 (16777603): 1137-1149
- Architecture and membrane interactions of the EGF receptor.Cell. 2013; 152 (23374350): 557-569
- A putative mechanism for downregulation of the catalytic activity of the EGF receptor via direct contact between its kinase and C-terminal domains.Structure. 2004; 12 (15576039): 2265-2275
- A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions.Proc. Natl. Acad. Sci. U. S. A. 2006; 103 (17148612): 19063-19068
- Molecular basis for multimerization in the activation of the epidermal growth factor receptor.Elife. 2016; 5 (27017828): e14107
- Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.Biochemistry. 2006; 45 (17073440): 13183-13192
- Functional reconstitutional of the human epidermal growth factor receptor system in Xenopus oocytes.J. Cell Biol. 1990; 111 (1976639): 1661-1671
- Receptor-mediated effects on ligand availability influence relative mitogenic potencies of epidermal growth factor and transforming growth factor alpha.J. Cell. Physiol. 1996; 166 (8600155 <512::AID-JCP6>3.0.CO;2-S): 512-522
- Quantitative measurements of protein interactions in a crowded cellular environment.Anal. Chem. 2008; 80 (18597478): 5976-5985
- Measuring the energetics of membrane protein dimerization in mammalian membranes.J. Am. Chem. Soc. 2010; 132 (20158179): 3628-3635
- The extracellular domain of fibroblast growth factor receptor 3 inhibits ligand-independent dimerization.Sci. Signal. 2010; 3 (21119106): ra86
- Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation.Biochim. Biophys. Acta. 2015; 1848 (25896659): 1591-1598
- How IGF-1 activates its receptor.Elife. 2014; 3 (25255214): e03772
- An analytic solution to the Forster energy transfer problem in two dimensions.Biophys. J. 1979; 28 (262548): 197-210
- Understanding the FRET signatures of interacting membrane proteins.J. Biol. Chem. 2017; 292 (28188294): 5291-5310
- Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer.Mol. Biol. Cell. 2015; 26 (26337388): 4087-4099
- Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging.Anal. Chem. 2015; 87 (26368334): 9960-9965
- The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers.Nat. Commun. 2018; 9 (30337523): 4325
- Revisiting a controversy: The effect of EGF on EGFR dimer stability.Biochim. Biophys. Acta Biomembr. 2020; 1862 (31295474): 183015
- Phosphorylated EGFR dimers are not sufficient to activate ras.Cell Rep. 2018; 22 (29514089): 2593-2600
- Matuzumab and cetuximab activate the epidermal growth factor receptor but fail to trigger downstream signaling by Akt or Erk.Int. J. Cancer. 2008; 122 (18033688): 1530-1538
- The insulin and EGF receptor structures: New insights into ligand-induced receptor activation.Trends Biochem. Sci. 2007; 32 (17280834): 129-137
- Dynamic analysis of the epidermal growth factor (EGF) receptor-ErbB2-ErbB3 protein network by luciferase fragment complementation imaging.J. Biol. Chem. 2013; 288 (24014028): 30773-30784
- Activation of the EGF Receptor by ligand binding and oncogenic mutations: The “rotation model”.Cells. 2017; 6 (28574446): 13
- Fully quantified spectral imaging reveals in vivo membrane protein interactions.Integr. Biol. (Camb). 2016; 8 (26787445): 216-229
- EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics.Cell. 2017; 171 (28988771): 683-695.e618
- Spatial control of EGF receptor activation by reversible dimerization on living cells.Nature. 2010; 464 (20208517): 783-787
- Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling.Mol. Biol. Cell. 2002; 13 (12134089): 2547-2557
- Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.Cell. 2009; 137 (19563760): 1293-1307
- Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3.Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (20007378): 21608-21613
- Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor.Mol. Cell Biol. 2015; 35 (26124280): 3083-3102
- Targeting the dimerization of epidermal growth factor receptors with small-molecule inhibitors.Chem. Biol. Drug Des. 2010; 76 (20456371): 1-9
- Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions.Anal. Chem. 2012; 84 (22985263): 8650-8655
- In vitro enzymatic characterization of near full length EGFR in activated and inhibited states.Biochemistry. 2009; 48 (19518076): 6624-6632
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—P. O. B. conceptualization; P. O. B. data curation; P. O. B. formal analysis; P. O. B. and K. H. validation; P. O. B. investigation; P. O. B. visualization; P. O. B. and K. H. methodology; P. O. B. writing-original draft; P. O. B. and K. H. project administration; P. O. B., K. H., and D. J. L. writing-review and editing; K. H. software; K. H. supervision; K. H. and D. J. L. funding acquisition; D. J. L. resources.
Funding and additional information—This work was supported by National Institutes of Health Grant 5R01GM099321-17 and Cancer Prevention Research Institute of Texas (CPRIT) Grant RR160023 (to P.O.B. and D.J.L.) and by National Science Foundation (NSF) Grant MCB-1712740 (to K. H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: EGFR
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy