How disulfides are formed in the periplasm: a brief overview

Enzyme | Function |
---|---|
Envelope oxidoreductases | |
Disulfide bond formation | |
DsbA | Catalyzes disulfide bond formation in the periplasm |
DsbB | Inner membrane protein that recycles DsbA |
Disulfide bond isomerization | |
DsbC | Catalyzes disulfide bond isomerization in the periplasm |
DsbD | Inner membrane protein that recycles DsbC |
Cysteine protection | |
DsbG | Rescues periplasmic single cysteine residues from oxidative damage |
DsbD | Inner membrane protein that recycles DsbG |
Essential envelope assembly factors with structural disulfide bonds | |
LptD | Outer membrane protein that inserts lipopolysaccharide molecules into the membrane; two nonconsecutive disulfides; formation of at least one disulfide is essential |
BamA | Outer membrane protein that inserts β-barrel proteins into the outer membrane; one nonessential disulfide bond |
FtsN | Inner membrane protein with a large periplasmic domain regulating peptidoglycan synthesis; one essential disulfide bond in the periplasmic domain. |
Disulfide-containing stress sensors monitoring envelope integrity | |
RcsF | Outer membrane lipoprotein monitoring the integrity of the peptidoglycan and of the outer membrane; two nonconsecutive disulfides required for folding; induces the Rcs phosphorelay pathway under stress |
NlpE | Outer membrane lipoprotein monitoring lipoprotein trafficking to the outer membrane; two consecutive disulfides required for folding; induces the Cpx system when lipoprotein transport is perturbed |
Envelope assembly enzymes with a catalytic cysteine residue | |
LdtA, LdtB, and LdtC | l,d-Transpeptidases catalyzing the attachment of the Braun lipoprotein Lpp to the peptidoglycan |
LdtD and LdtE | l,d-Transpeptidases catalyzing the formation of 3-3 cross-links between two meso-diaminopimelic acid residues of adjacent stem peptides |
Three essential assembly factors have disulfide-bonded cysteines in their native conformations


Disulfide bond formation is required for the folding of two important envelope stress sensors

The activity of a family of enzymes important for envelope integrity depends on a single reduced cysteine residue

Conclusions and perspectives
Acknowledgments
References
- The bacterial cell envelope.Cold Spring Harb. Perspect. Biol. 2010; 2 (20452953): a000414
- Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli.Biochim. Biophys. Acta. 2008; 1778 (17658458): 1714-1734
- From the regulation of peptidoglycan synthesis to bacterial growth and morphology.Nat. Rev. Microbiol. 2011; 10 (22203377): 123-136
- Regulation of peptidoglycan synthesis and remodelling.Nat. Rev. Microbiol. 2020;
- Lipoproteins: structure, function, biosynthesis.Subcell. Biochem. 2019; 92 (31214984): 39-77
- Lpp, the Braun lipoprotein, turns 50: major achievements and remaining issues.FEMS Microbiol. Lett. 2018; 365: fny199
- Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli.Proteomics. 2010; 10 (19953543): 771-784
- Outer membrane biogenesis.Annu. Rev. Microbiol. 2017; 71 (28886680): 539-556
- TonB-dependent transporters: regulation, structure, and function.Annu. Rev. Microbiol. 2010; 64 (20420522): 43-60
- Lipoprotein sorting in bacteria.Annu. Rev. Microbiol. 2011; 65 (21663440): 239-259
- The journey of lipoproteins through the cell: one birthplace, multiple destinations.Adv. Microb. Physiol. 2016; 69 (27720009): 1-50
- Import and export of bacterial protein toxins.Int. J. Med. Microbiol. 2015; 305 (25620353): 238-242
- Protein folding in the periplasm of Escherichia coli.Mol. Microbiol. 1994; 12: 685-692
- Protein folding in the cell envelope of Escherichia coli.Nat. Microbiol. 2016; 1 (27573113): 16107
- Oxidative stress, protein damage and repair in bacteria.Nat. Rev. Microbiol. 2017; 15 (28420885): 385-396
- Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation.Biochemistry. 1993; 32 (8476861): 4322-4329
- Protein engineering of subtilisin BPNʹ: enhanced stabilization through the introduction of two cysteines to form a disulfide bond.Biochemistry. 1987; 26 (3476160): 2077-2082
- The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo.Biochemistry. 1993; 32 (8494885): 5083-5092
- Why is DsbA such an oxidizing disulfide catalyst?.Cell. 1995; 83 (8521518): 947-955
- A pathway for disulfide bond formation in vivo.Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (8430071): 1038-1042
- Oxidative protein folding is driven by the electron transport system.Cell. 1999; 98 (10428033): 217-227
- Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli.Biochemistry. 1995; 34 (7536035): 5075-5089
- Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin.J. Bacteriol. 1997; 179 (9352906): 6602-6608
- Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.Nat. Struct. Biol. 2000; 7 (10700276): 196-199
- An in vivo pathway for disulfide bond isomerization in Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 1996; 93 (8917542): 13048-13053
- Structure, function, and mechanism of thioredoxin proteins.Antioxid. Redox Signal. 2010; 13 (20136512): 1205-1216
- Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade.Cell. 2000; 103: 769-779
- Reconstitution of a disulfide isomerization system.J. Biol. Chem. 2002; 277 (12004064): 26886-26892
- Structure and multistate function of the transmembrane electron transporter CcdA.Nat. Struct. Mol. Biol. 2015; 22 (26389738): 809-814
- Solution structure and elevator mechanism of the membrane electron transporter CcdA.Nat. Struct. Mol. Biol. 2018; 25 (29379172): 163-169
- Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18695247): 11933-11938
- How proteins form disulfide bonds.Antioxid. Redox Signal. 2011; 15 (20849374): 49-66
- Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (8503954): 1043-1047
- DSB proteins and bacterial pathogenicity.Nat. Rev. Microbiol. 2009; 7 (19198617): 215-225
- Maturation of Pseudomonas aeruginosa elastase: formation of the disulfide bonds.J. Biol. Chem. 2001; 276 (11350952): 26030-26035
- DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors.Infect. Immun. 2003; 71 (12595484): 1590-1595
- Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.mBio. 2013; 4 (24327342): e00912-e00913
- Targeting bacterial Dsb proteins for the development of anti-virulence agents.Molecules. 2016; 21: 811
- The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner.Mol. Microbiol. 2008; 67 (18036138): 336-349
- Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.Science. 2004; 303 (14739460): 534-537
- The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain.Mol. Microbiol. 2017; 103 (27785850): 413-422
- At the heart of bacterial cytokinesis: the Z ring.Trends Microbiol. 2019; 27 (31171437): 781-791
- Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli.J. Bacteriol. 2004; 186 (15466024): 6728-6737
- The Lpt ABC transporter for lipopolysaccharide export to the cell surface.Res. Microbiol. 2019; 170 (31376484): 366-373
- Biosynthesis and export of bacterial lipopolysaccharides.Annu. Rev. Biochem. 2014; 83 (24580642): 99-128
- Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge.Science. 2018; 359 (29449493): 798-801
- Outer membrane translocon communicates with inner membrane ATPase to stop lipopolysaccharide transport.J. Am. Chem. Soc. 2018; 140 (30253645): 12691-12694
- The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21257904): 2486-2491
- Structural basis for lipopolysaccharide insertion in the bacterial outer membrane.Nature. 2014; 511 (24990751): 108-111
- Nonconsecutive disulfide bond formation in an essential integral outer membrane protein.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20566849): 12245-12250
- Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export.Science. 2012; 337 (22936569): 1665-1668
- The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD.J. Biol. Chem. 2010; 285 (20615876): 29425-29433
- The disulfide bond formation pathway is essential for anaerobic growth of Escherichia coli.J. Bacteriol. 2017; 199: e00117-e00120
- Preprotein mature domains contain translocase targeting signals that are essential for secretion.J. Cell Biol. 2017; 216 (28404644): 1357-1369
- Folding mechanisms of periplasmic proteins.Biochim. Biophys. Acta. 2014; 1843 (24239929): 1517-1528
- The β-barrel assembly machinery in motion.Nat. Rev. Microbiol. 2017; 15 (28216659): 197-204
- Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM.Nat. Commun. 2016; 7 (27686148): 12865
- The structure of the β-barrel assembly machinery complex.Science. 2016; 351 (26744406): 180-186
- Structural basis of outer membrane protein insertion by the BAM complex.Nature. 2016; 531 (26901871): 64-69
- Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins.Nat. Struct. Mol. Biol. 2016; 23 (26900875): 192-196
- Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli.Cell. 2005; 121 (15851030): 235-245
- β-Barrel membrane protein assembly by the Bam complex.Annu. Rev. Biochem. 2011; 80 (21370981): 189-210
- Structural insight into the biogenesis of β-barrel membrane proteins.Nature. 2013; 501 (23995689): 385-390
- Lateral opening and exit pore formation are required for BamA function.Structure. 2014; 22 (24980798): 1055-1062
- Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself.J. Bacteriol. 2012; 194 (22753067): 4662-4668
- Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23479609): 5151-5156
- Formation of a β-barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA.Elife. 2019; 8: e49787
- Extreme dynamics in the BamA β-barrel seam.Biochemistry. 2017; 56 (28569500): 3142-3149
- Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel.Nat. Commun. 2019; 10 (31350400): 3358
- The complex Rcs regulatory cascade.Annu. Rev. Microbiol. 2018; 72 (29897834): 111-139
- Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF.J. Bacteriol. 2010; 192 (20675476): 4894-4903
- The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance.J. Bacteriol. 2008; 190 (18192383): 2065-2074
- Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC.J. Biol. Chem. 2011; 286 (21454485): 16734-16742
- Disulfides as redox switches: from molecular mechanisms to functional significance.Antioxid. Redox Signal. 2010; 12 (19634988): 53-91
- Detecting envelope stress by monitoring β-barrel assembly.Cell. 2014; 159 (25525882): 1652-1664
- Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25267629): E4350-E4358
- A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane.Elife. 2016; 5: e15276
- Structural insight into the formation of lipoprotein-β-barrel complexes by the β-barrel assembly machinery.bioRxiv. 2019; : 823146
- A stress response monitoring lipoprotein trafficking to the outer membrane.mBio. 2019; 10: e00618-e00619
- The lipoprotein NlpE is a Cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope.J. Bacteriol. 2019; 201: e00611-e00618
- Everything old is new again: an update on current research on the Cpx envelope stress response.Biochim. Biophys. Acta. 2014; 1843 (24184210): 1529-1541
- Major Tom to ground control: how lipoproteins communicate extracytoplasmic stress to the decision center of the cell.J. Bacteriol. 2017; 199: e00216-e00217
- Structural studies of the Cpx pathway activator NlpE on the outer membrane of Escherichia coli.Structure. 2007; 15 (17698001): 963-976
- Fluorescent d-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation.Nat. Microbiol. 2017; 2 (28974693): 1648-1657
- Identification of the ld-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan.J. Bacteriol. 2007; 189: 3927-3931
- Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope.Nat. Commun. 2020; 11: 1789
- Communication across the bacterial cell envelope depends on the size of the periplasm.PLoS Biol. 2017; 15 (29257832): e2004303
- Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane.Science. 2017; 356 (28408605): 197-200
- Identification of the ld-transpeptidases for peptidoglycan cross-linking in Escherichia coli.J. Bacteriol. 2008; 190 (18456808): 4782-4785
- Peptidoglycan remodeling enables Escherichia coli to survive severe outer membrane assembly defect.mBio. 2019; 10: e02718-e02729
- The composition of the murein of Escherichia coli.J. Biol. Chem. 1988; 263 (3292521): 10088-10095
- The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by ld-transpeptidation.J. Bacteriol. 2008; 190 (18408028): 4360-4366
- A periplasmic reducing system protects single cysteine residues from oxidation.Science. 2009; 326 (19965429): 1109-1111
- Redox reactions and microbial killing in the neutrophil phagosome.Antioxid. Redox Signal. 2013; 18 (22881869): 642-660
- Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC.J. Biol. Chem. 2005; 280 (16087673): 33785-33791
- Copper inhibits peptidoglycan ld-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (30275297): 10786-10791
- In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG.J. Biol. Chem. 1999; 274 (10075670): 7784-7792
- Cysteines as redox molecular switches and targets of disease.Front. Mol. Neurosci. 2017; 10 (28634440): 167
- Thiol-based redox switches.Biochim. Biophys. Acta. 2014; 1844 (24657586): 1335-1343
- Structure of the outer membrane protein A transmembrane domain.Nat. Struct. Biol. 1998; 5 (9808047): 1013-1017
- Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane.FASEB J. 2012; 26 (21965596): 219-228
- An alternative topological model for Escherichia coli OmpA.Protein Sci. 1996; 5 (8771211): 170-173
- Insights into the structure and assembly of Escherichia coli outer membrane protein A.FEBS J. 2012; 279 (22251410): 894-909
- Salmonella rapidly regulates membrane permeability to survive oxidative stress.mBio. 2016; 7: e01216-e01238
- Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties.J. Biol. Chem. 1988; 263 (3276680): 2034-2040
- Effects of sulfhydryl reagents on the binding and release of penicillin G by d-alanine carboxypeptidase IA of Escherichia coli.J. Biol. Chem. 1978; 253 (344319): 2584-2588
- The expanding landscape of the thiol redox proteome.Mol. Cell. Proteomics. 2016; 15 (26518762): 1-11
- Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol. 1993; 234 (8254673): 779-815
- Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments.PLoS Genet. 2018; 14 (29852010): e1007398
Article info
Publication history
Footnotes
Author contributions—J.-F. C. and C. V. G. writing-original draft; J.-F. C., S.-H. C., B. I. I., and C. V. G. writing-review and editing.
Funding and additional information—This work was supported, in part, by grants from the Fonds de la Recherche Scientifique, from the CNRS, from the FRFS-WELBIO (Grant WELBIO-CR-2019-03), from the EOS Excellence in Research Program of the FWO and FRS-FNRS (Grant G0G0818N), and from the Fédération Wallonie-Bruxelles (Grant ARC 17/22-087).
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: Trx
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy