
Results
p120RasGAP C-SH2 | p120RasGAP C-SH2 bound to p190RhoGAP phosphopeptide | |
---|---|---|
Data collection | ||
PDB accession code | 6WAX | 6WAY |
Wavelength (Å) | 0.97920 | 0.97920 |
Resolution range (Å) | 50–1.50 (1.55–1.50) | 30–1.50 (1.55–1.50) |
Space group | P 21 21 21 | C 2 2 21 |
Cell dimensions | ||
a, b, c (Å) | 52.5, 65.6, 71.6 | 63.1, 83.9, 54.2 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 |
Unique reflections | 40,194 | 23,209 |
Multiplicity | 11.7 (7.0) | 21.2 (8.6) |
Completeness (%) | 100 (99.9) | 100 (99.8) |
Mean I/σI | 24.1 (2.0) | 23.6 (2.0) |
Wilson B factor (Å2) | 22.6 | 18.7 |
Rpim (%) | 2.8 (40.7) | 3.1 (29.3) |
CC½ | 0.993 (0.689) | 0.995 (0.806) |
CC* | 0.998 (0.903) | 0.999 (0.945) |
Refinement | ||
Resolution range (Å) | 48.4–1.50 (1.54–1.50) | 27.3–1.50 (1.57–1.50) |
Reflections used in refinement | 40,121 (2590) | 23,164 (2606) |
Reflections used for Rfree | 1943 (126) | 1148 (130) |
Reflections used for Rfree (%) | 4.84 | 4.96 |
Rwork (%) | 17.9 (28.5) | 16.5 (24.8) |
Rfree (%) | 19.7 (29.7) | 19.0 (27.8) |
No. of non-hydrogen atoms | 2077 | 1188 |
SH2 domains | 1800 | 921 |
Peptide | 70 | |
Water | 243 | 197 |
Other solvent | 34 | |
No. protein residues | 207 (105 chain A, 102 chain B) | 116 (106 SH2, 10 peptide) |
Residue | ||
p120RasGAP SH2 | 340–444, 343–444 | 339–444 |
p190RhoGAP phosphopeptide | 1085–1094 | |
RMSD | ||
Bond lengths (Å) | 0.006 | 0.005 |
Bond angles (°) | 0.872 | 0.809 |
Ramachandran plot (%) | ||
Favored | 98.0 | 98.1 |
Allowed | 2.0 | 1.9 |
Outliers | 0 | 0 |
Rotamer outliers (%) | 1.0 | 0 |
MolProbity clashscore | 5.27 | 2.08 |
Average B factor (Å2) | 32.6 | 27.5 |
SH2 domains | 30.9 | 24.4 |
Copies A, B | 29.6, 32.3 | |
Peptide | 34.9 | |
Water | 42.3 | 39.3 |


p120RasGAP C-SH2 protein | n | Kd | ΔH | ΔS | TΔS | ΔG |
---|---|---|---|---|---|---|
μm | kcal/mol | cal/mol*K | kcal/mol | kcal/mol | ||
WT | 0.91 ± 0.08 | 0.16 ± 0.05 | −14.3 ± 1.6 | −16.7 ± 6.0 | −5.0 ± 1.7 | −9.3 ± 0.2 |
R377A | 0.90 ± 0.08 | 0.46 ± 0.11 | −17.3 ± 1.5 | −29.1 ± 5.0 | −8.7 ± 1.3 | −8.7 ± 0.1 |
R398A | 0.87 ± 0.08 | 0.19 ± 0.02 | −16.9 ± 1.3 | −26.0 ± 4.0 | −7.7 ± 1.2 | −9.2 ± 0.4 |
K400A | 0.92 ± 0.14 | 0.81 ± 0.15 | −12.3 ± 3.0 | −13.4 ± 8.0 | −4.0 ± 2.0 | −8.3 ± 0.1 |
R398A/K400A | 1.10 ± 0.09 | 6.24 ± 4.00 | −13.2 ± 4.0 | −20.1 ± 14.0 | −6.0 ± 4.0 | −7.2 ± 0.5 |
Discussion
Classification of p120RasGAP C-SH2
Specificity of C-SH2 for phosphotyrosine
NMR solution structure of C-SH2
Functional role of the FLVR-unique C-SH2
Broader implications
Materials and methods
Expression and purification p120RasGAP C-SH2 domain
Peptide synthesis
Crystallization, data collection, structure determination, and refinement
Isothermal titration calorimetry
Evolutionary analysis
Data availability
Acknowledgments
Supplementary Material
Author Profile
Rachel Jaber Chehayeb
References
- The human and mouse complement of SH2 domain proteins: establishing the boundaries of phosphotyrosine signaling.Mol. Cell. 2006; 22 (16793553): 851-868
- A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps.Mol. Cell Biol. 1986; 6 (3025655): 4396-4408
- Specificity in signal transduction: from phosphotyrosine–SH2 domain interactions to complex cellular systems.Cell. 2004; 116 (14744431): 191-203
- Why modules matter.FEBS Lett. 2012; 586 (22710154): 2572-2574
- The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases.Crit. Rev. Biochem. Mol. Biol. 2018; 53 (30183386): 535-563
- Structure and regulation of Src family kinases.Oncogene. 2004; 23 (15489910): 7918-7927
- SH2 and PTB domains in tyrosine kinase signaling.Sci. STKE. 2003; 2003 (12865499): RE12
- The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction.FEBS Lett. 2012; 586 (22569091): 2597-2605
- Superbinder SH2 domains act as antagonists of cell signaling.Sci. Signal. 2012; 5 (23012655): ra68
- Evolution of SH2 domains and phosphotyrosine signalling networks.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012; 367 (22889907): 2556-2573
- Earliest holozoan expansion of phosphotyrosine signaling.Mol. Biol. Evol. 2014; 31 (24307687): 517-528
- SH2 domains recognize specific phosphopeptide sequences.Cell. 1993; 72 (7680959): 767-778
- Defining the specificity space of the human SRC homology 2 domain.Mol. Cell. Proteomics. 2008; 7 (17956856): 768-784
- Specific motifs recognized by the SH2 domains of Csk 3BP2, fps/fes, Grb-2, HCP, SHC, Syk and Vav.Mol. Cell Biol. 1994; 14 (7511210): 2777-2785
- Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides.Nature. 1992; 358 (1379696): 646-653
- Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck.Nature. 1993; 362 (7680435): 87-91
- Three-dimensional solution structure of the src homology 2 domain of c-abl.Cell. 1992; 70 (1505033): 697-704
- Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms.Cell. 1993; 72 (7680960): 779-790
- Loops govern SH2 domain specificity by controlling access to binding pockets.Sci. Signal. 2010; 3 (20442417): ra34
- Surface loops in a single SH2 domain are capable of encoding the spectrum of specificity of the SH2 family.Mol. Cell. Proteomics. 2019; 18 (30482845): 372-382
- SH2 domains: role, structure and implications for molecular medicine.Exp. Rev. Mol. Med. 2004; 6 (14987415): 1-18
- Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.J. Mol. Biol. 1999; 293 (10543978): 971-985
- Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides.Mol. Cell Biol. 1993; 13 (7504171): 7278-7287
- Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo.Mol. Cell Biol. 1992; 12 (1370711): 609-618
- A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants.Science. 1987; 238 (2821624): 542-545
- Cloning of bovine GAP and its interaction with oncogenic ras p21.Nature. 1988; 335 (2842690): 90-93
- Molecular cloning of two types of GAP complementary DNA from human placenta.Science. 1988; 242 (3201259): 1697-1700
- GAP control: regulating the regulators of small GTPases.Trends Cell Biol. 2004; 14 (15246431): 377-385
- GEFs and GAPs: critical elements in the control of small G proteins.Cell. 2007; 129 (17540168): 865-877
- Interaction of ras p21 proteins with GTPase activating protein.Cold Spring Harb. Symp. Quant. Biol. 1988; 53 (2855502): 849-854
- Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein.Nature. 1995; 377 (7477259): 695-701
- p120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling.Biochimie (Paris). 2009; 91 (19022332): 320-328
- Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain.Science. 1988; 240 (2833817): 518-521
- PDBsum: summaries and analyses of PDB structures.Nucleic Acids Res. 2001; 29 (11125097): 221-222
- Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein.Mol. Cell Biol. 1991; 11 (2005883): 1804-1812
- Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein.J. Biol. Chem. 1995; 270 (7629101): 17947-17952
- Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion.J. Cell Sci. 2006; 119 (16522685): 1244-1254
- Role of p120 Ras-GAP in directed cell movement.J. Cell Biol. 2000; 149 (10769036): 457-470
- Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap.Mol. Cell Biol. 1997; 17 (9121432): 1840-1847
- Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide.PLoS One. 2019; 14 (31891593): e0226113
- c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation.J. Cell Biol. 1995; 130 (7542246): 355-368
- Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior.J. Neurosci. 2007; 27 (17928439): 10982-10992
- Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane.Mol. Biol. Cell. 2006; 17 (16971514): 4827-4836
- Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation.EMBO J. 1997; 16 (9034330): 473-483
- Adhesion-dependent regulation of p190RhoGAP in the developing brain by the Abl-related gene tyrosine kinase.Curr. Biol. 2004; 14 (1508284): 691-696
- Multimodal recognition of diverse peptides by the C-terminal SH2 domain of phospholipase C-γ1 protein.Biochemistry. 2017; 56 (28376302): 2225-2237
- The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains.J. Biol. Chem. 2006; 281 (16636066): 18236-18245
- Probing the “two-pronged plug two-holed socket” model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study.Biochemistry. 1998; 37 (9636054): 9083-9090
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38 (20457744): W545-W549
- Structural basis for DNA recognition by STAT6.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27803324): 13015-13020
- Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain.Biopolymers. 2013; 99 (23955592): 897-907
- Identification and characterization of a large family of superbinding bacterial SH2 domains.Nat. Commun. 2018; 9 (30382091): 4549
- Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal.Proc. Natl. Acad. Sci. U.S.A. 1995; 92 (7536927): 3199-3203
- Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition.Mol. Cell. 1999; 4 (10549287): 555-561
- Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor.Nature. 1995; 377 (7659156): 32-38
- Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling.Methods Enzymol. 2011; 488 (21195228): 147-183
- Structural basis of recognition of interferon-α receptor by tyrosine kinase 2.Nat. Struct. Mol. Biol. 2014; 21 (24704786): 443-448
- Crystal structure of the FERM-SH2 module of human Jak2.PLoS One. 2016; 11 (27227461): e0156218
- A “three-pronged” binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome.EMBO J. 2002; 21 (11823424): 314-323
- The SH2 domain interaction landscape.Cell Rep. 2013; 3 (23545499): 1293-1305
- Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives.Chem. Biol. 2010; 17 (20338519): 274-284
- Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase.J. Biol. Chem. 2011; 286 (21030588): 480-490
- Why two heads are better.Structure. 1995; 3 (8590006): 977-980
- A new flavor in phosphotyrosine recognition.Structure. 1995; 3 (7545066): 421-424
- Phosphotyrosine-binding domains in signal transduction.Nat. Rev. Mol. Cell. Biol. 2002; 3 (11994738): 177-186
- Fast rebinding increases dwell time of Src homology 2 (SH2)–containing proteins near the plasma membrane.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22886086): 14024-14029
- Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors.PLoS One. 2012; 7 (22973453): e44471
- Peptide-binding domains: are limp handshakes safest?.Sci. Signal. 2012; 5 (23012652): pe40
- Dynamics of receptor tyrosine kinase signaling complexes.FEBS Lett. 2012; 586 (22584051): 2575-2579
- Progress towards the development of SH2 domain inhibitors.Chem. Soc. Rev. 2013; 42 (23396540): 3337-3370
- Targeting SH2 domains in breast cancer.Fut. Med. Chem. 2014; 6 (25495984): 1909-1926
- A novel macrocyclic tetrapeptide mimetic that exhibits low-picomolar Grb2 SH2 domain-binding affinity.Biochem. Biophys. Res. Commun. 2003; 310 (14521921): 378-383
- Processing of X-ray diffraction data collected in oscillation mode.Method Enzymol. 1997; 276 (27799103): 307-326
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.Acta Crystallogr. D Biol. Crystallogr. 2008; 64 (18094468): 61-69
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- A continuous spectrophotometric and fluorimetric assay for protein tyrosine phosphatase using phosphotyrosine-containing peptides.Anal. Biochem. 1993; 211 (7686722): 7-15
- FlyBase 2.0: the next generation.Nucleic Acids Res. 2019; 47 (30364959): D759-D765
- WormBase: a modern model organism information resource.Nucleic Acids Res. 2019; 48 (31642470): D762-D767
- MycoCosm portal: gearing up for 1000 fungal genomes.Nucleic Acids Res. 2014; 42 (24297253): D699-D704
- MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Mol. Biol. Evol. 2013; 30 (23329690): 772-780
- Jalview version 2: a multiple sequence alignment editor and analysis workbench.Bioinformatics. 2009; 25 (19151095): 1189-1191
- Data publication with the structural biology data grid supports live analysis.Nat. Commun. 2016; 7 (26947396): 10882
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—R. J. C., A. L. S., and T. J. B. data curation; R. J. C., A. L. S., and T. J. B. formal analysis; R. J. C., J. W., and A. L. S. investigation; R. J. C., A. L. S., and T. J. B. visualization; R. J. C. methodology; R. J. C. and A. L. S. writing-original draft; R. J. C., J. W., A. L. S., and T. J. B. project administration; A. L. S. and T. J. B. supervision; A. L. S. and T. J. B. writing-review and editing; T. J. B. conceptualization; T. J. B. funding acquisition.
Funding and additional information—This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by National Institutes of Health Grant P41GM103403. This work used resources of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the Department of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. R. J. C. was supported in part by Mr. Morton and Mrs. Maggie Rosenfeld, the Rosenfeld Science Scholarship, and the Yale College Dean's Office. This work was also supported by National Institutes of Health Grants R01GM102262 and S10OD018007 and American Heart Association Grant 19IPLOI34740007 (to T. J. B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: SH2
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy