- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Perrault I.
- Estrada-Cuzcano A.
- Lopez I.
- Kohl S.
- Li S.
- Testa F.
- Zekveld-Vroon R.
- Wang X.
- Pomares E.
- Andorf J.
- Aboussair N.
- Banfi S.
- Delphin N.
- den Hollander A.I.
- Edelson C.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.

- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Perrault I.
- Estrada-Cuzcano A.
- Lopez I.
- Kohl S.
- Li S.
- Testa F.
- Zekveld-Vroon R.
- Wang X.
- Pomares E.
- Andorf J.
- Aboussair N.
- Banfi S.
- Delphin N.
- den Hollander A.I.
- Edelson C.
- et al.
Results
Mutations in two clusters of surface-exposed residues suppress RD3 ability to inhibit RetGC1
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Peshenko I.V.
- Moiseyev G.P.
- Olshevskaya E.V.
- Dizhoor A.M.

Mutation | % of Remaining GC Activity, n |
---|---|
WT | 11 ± 1.2,19 |
3L→S5 deletion | 3.9 ± 0.1, 3 |
W6L | 11.1 ± 0.6, 3 |
W6L/W9L | 13.4 ± 0.6, 3 |
T18D/R19A | 14.9 ± 0.6, 3 |
S20Y/P21R | 11.5 ± 0.2, 3 |
A22Y | 14.4 ± 0.3, 3 |
A22E | 6.4 ± 0.2, 3 |
E23R | 8.2 ± 0.3, 3 |
M24D | 10.9 ± 0.1, 3 |
E27R | 6.6 ± 0.1, 3 |
T28R | 15.3 ± 0.7, 3 |
M31R | 6.6 ± 0.4, 3 |
T34Q | 8.1 ± 0.6, 3 |
G35Y | 5.5 ± 0.2, 3 |
R38S | 18.2 ± 0.7, 3 |
E39R | 6.6 ± 0.5, 3 |
E41A | 10.3 ± 0.3, 3 |
E41R | 12.6 ± 0.6, 3 |
R42E | 14.5 ± 0.3, 3 |
Q43R | 5.3 ± 0.2, 3 |
45RER47→45AAA47 | 17.9 ± 0.3, 3 |
50AVRK53→50KAIE53 | 12.4 ± 0.4, 3 |
C55D | 6.9 ± 0.2, 3 |
T56H | 9.2 ± 0.3, 3 |
V58Q | 16.7 ± 0.7, 3 |
D59R | 24.1 ± 0.2, 3 |
Y60A | 65.3 ± 0.6, 3 |
S61Y | 17.7 ± 0.4, 3 |
W62A | 49.7 ± 1, 3 |
L63R | 82.8 ± 1.8, 3 |
A64R | 15 ± 0.2, 3 |
S65Y | 10.8 ± 0.8, 3 |
T66K | 7.3 ± 0.2, 3 |
P67D | 11 ± 0.6, 3 |
P67G | 11.3 ± 0.5, 3 |
R68D | 12.4 ± 0.3, 3 |
S69Y | 9.0 ± 0.2, 3 |
T70R | 8.2 ± 0.04, 3 |
Y71G | 15.4 ± 0.3, 3 |
Y71E | 16.4 ± 0.6, 3 |
D72R | 5.5 ± 0.3, 3 |
S74R | 15.5 ± 0.3, 3 |
P75R | 10.7 ± 0.7, 3 |
I76R | 7.5 ± 0.3, 3 |
77ERLQ80→77QLRE80 | 11.5 ± 0.6, 3 |
D83R | 7.2 ± 0.3, 3 |
V86R/K87A | 7.1 ± 0.5, 3 |
H89G | 13.2 ± 0.6, 3 |
P90A | 24.2 ± 0.9, 3 |
S91Y | 13.3 ± 0.1, 3 |
Y92A | 13.3 ± 0.4, 3 |
G94Y | 22.5 ± 0.6, 3 |
I97Y | 55 ± 0.6, 3 |
L98R | 5.9 ± 0.5, 3 |
L98Y | 9.9 ± 0.2, 3 |
R99E | 27.1 ± 0.5, 3 |
R101E | 37.9 ± 0.3, 3 |
R101A | 48 ± 0.9, 3 |
Q102L | 28.5 ± 0.8, 3 |
L103R | 12.1 ± 0.3, 3 |
A105R | 8.5 ± 0.2, 3 |
A105Y | 17.9 ± 0.2, 3 |
E106K | 17.5 ± 0.3, 3 |
E108K | 7.1 ± 0.8, 3 |
E110R | 9.6 ± 0.2, 3 |
Q112E/E113Q | 9.2 ± 0.2, 3 |
Q116Y | 10.8 ± 0.5, 3 |
R119S | 12.0 ± 0.3, 3 |
S120Y | 8.2 ± 0.3, 3 |
Q123E/E124Q | 11.9 ± 0.3, 3 |
E127R/R128E | 10.1 ± 0.4, 3 |
132EEE134→132QQQ134 | 11.8 ± 0.3, 3 |
A135R | 9.1 ± 0.3, 3 |
137KLTRQ141→137QRKTL141 | 8.6 ± 0.3, 3 |
W142A | 7.9 ± 2.5, 3 |
S143Y | 9.1 ± 0.2, 3 |
L144W | 7.3 ± 0.5, 3 |
R145D | 9.2 ± 0.05, 3 |
P146ter | 11.7 ± 1.9, 3 |
147RGSL150→147GRLS150 | 9.6 ± 0.3, 3 |
A151R/T152Q | 7.1 ± 0.5, 3 |
F153R | 7.3 ± 0.1, 3 |
154KTRAR158→154ENSES158 | 7.5 ± 0.1, 3 |
164SDIRT168→164RSDTI168 | 9.5 ± 0.6, 3 |
171EDVERD176→171KKAKQR176 | 2.5 ± 0.3, 3 |
178PPP180→178AAA180 | 8.5 ± 0.5, 3 |
186SMP188→186PRS188 | 12.7 ± 0.2, 3 |
The two clusters of surface-exposed residues define the high affinity of RD3 for the cyclase

Mutation | IC50, mean± S.D. nm, n | P, Student's t |
---|---|---|
WT | 3.6 ± 0.5, 12 | − |
Cluster 1 | ||
Y60A | 630 ± 41, 3 | 0.0014 |
W62A | 253 ± 18, 3 | 0.0018 |
L63R | 882 ± 58, 3 | 0.0015 |
W62A/L63R | Weak inhibition, 3 | N/A |
Cluster 2 | ||
R101A | 261 ± 15, 3 | 0.0011 |
R101E | 135 ± 18, 3 | 0.0064 |
Q102L | 59 ± 7.4, 3 | 0.0059 |
R101A/Q102L | 4457 ± 1556, 3 | 0.008 |
Int(−) (Clusters 1 + 2) | ||
W62A/L63R + R101A/Q102L | No inhibition, 3 | N/A |
Cluster 1 vicinity | ||
D59R | 26.6 ± 3, 3 | 0.0055 |
S61Y | 11.8 ± 0.82, 3 | 0.0015 |
S74R | 15.6 ± 1.6, 3 | 0.0049 |
Cluster 2 vicinity | ||
H89G | 10.6 ± 0.77, 3 | 0.0017 |
Y92A | 9.8 ± 0.2, 3 | 0.0001 |
G94Y | 20.7 ± 2.9, 3 | 0.0089 |
R99E | 35.5 ± 4.2, 4 | 0.0006 |
A105Y | 16.7 ± 3.2, 3 | 0.0183 |
A105R | 3.6 ± 0.4, 3 | 0.805 |
E106K | 13.5 ± 1.7, 3 | 0.0085 |


Inactivation of the binding interface on RD3 prevents co-localization of RD3 with RetGC


Discussion
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Perrault I.
- Estrada-Cuzcano A.
- Lopez I.
- Kohl S.
- Li S.
- Testa F.
- Zekveld-Vroon R.
- Wang X.
- Pomares E.
- Andorf J.
- Aboussair N.
- Banfi S.
- Delphin N.
- den Hollander A.I.
- Edelson C.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Perrault I.
- Estrada-Cuzcano A.
- Lopez I.
- Kohl S.
- Li S.
- Testa F.
- Zekveld-Vroon R.
- Wang X.
- Pomares E.
- Andorf J.
- Aboussair N.
- Banfi S.
- Delphin N.
- den Hollander A.I.
- Edelson C.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andreásson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
Experimental procedures
Materials
RD3 mutagenesis, expression, and purification
GCAP1 expression and purification
RetGC1 expression and activity assay
- Peshenko I.V.
- Moiseyev G.P.
- Olshevskaya E.V.
- Dizhoor A.M.
Co-transfection and confocal imaging
Three-dimensional molecular visualization
Statistics
Data availability
Acknowledgments
References
- Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration.Am. J. Hum. Genet. 2006; 79 (17186464): 1059-1070
- Insights into the role of RD3 in guanylate cyclase trafficking, photoreceptor degeneration, and Leber congenital amaurosis.Front. Mol. Neurosci. 2014; 7 (24904271): 44
- RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells.Proc. Natl. Acad. Sci. U. S. A. 2010; 107 (21078983): 21158-21163
- RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of Leber congenital amaurosis 12.Hum. Mol. Genet. 2013; 22 (23740938): 3894-3905
- Impaired association of retinal degeneration-3 with guanylate cyclase-1 and guanylate cyclase-activating protein-1 leads to Leber congenital amaurosis-1.J. Biol. Chem. 2015; 290 (25477517): 3488-3499
- Retinal guanylyl cyclase activation by calcium sensor proteins mediates photoreceptor degeneration in an rd3 mouse model of congenital human blindness.J. Biol. Chem. 2019; 294 (31346032): 13729-13739
- The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator.Neuron. 1994; 12 (7912093): 1345-1352
- Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2.Proc. Natl. Acad. Sci. U. S. A. 1995; 92 (7777544): 5535-5539
- Two membrane forms of guanylyl cyclase found in the eye.Proc. Natl. Acad. Sci. U. S. A. 1995; 92 (7831337): 602-606
- Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors.Biochemistry. 2011; 50 (21598940): 5590-5600
- Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions.Nature. 1988; 334 (2455233): 64-66
- Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein.Neuron. 1994; 13 (7520254): 395-404
- Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase.J. Biol. Chem. 1995; 270 (7559656): 25200-25206
- Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish, characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes).J. Mol. Evol. 2004; 59 (15486694): 204-217
- Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors.Proc. Natl. Acad. Sci. U. S. A. 2001; 98 (11493703): 9948-9953
- Role of guanylyl cyclase modulation in mouse cone phototransduction.J. Neurosci. 2011; 31 (21632921): 7991-8000
- Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse, biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice.PLoS One. 2012; 7 (23082185): e47637
- Protein and signaling networks in vertebrate photoreceptor cells.Front. Mol. Neurosci. 2015; 8 (26635520): 67
- Phototransduction in mouse rods and cones.Pflugers Arch. 2007; 454 (17226052): 805-819
- Molecular mechanisms of vertebrate photoreceptor light adaptation.Curr. Opin. Neurobiol. 1999; 9 (10448166): 410-418
- Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): Role in regulation of photoreceptor guanylyl cyclase.Mol. Cell. Biochem. 2010; 334 (19953307): 117-124
- GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress.Cell Death Dis. 2020; 11 (31980596): 62
- Retinal degeneration 3 (RD3) protein inhibits catalytic activity of retinal membrane guanylyl cyclase (RetGC) and its stimulation by activating proteins.Biochemistry. 2011; 50 (21928830): 9511-9519
- Functional study and mapping sites for interaction with the target enzyme in retinal degeneration 3 (RD3) protein.J. Biol. Chem. 2016; 291 (27471269): 19713-19723
- Union makes strength, a worldwide collaborative genetic and clinical study to provide a comprehensive survey of RD3 mutations and delineate the associated phenotype.PLoS One. 2013; 8 (23308101): e51622
- Canine RD3 mutation establishes rod cone dysplasia type 2 (rcd2) as ortholog of human and murine rd3.Mamm. Genome. 2009; 20 (19130129): 109-123
- Retinal degeneration 3 (RD3) protein, a retinal guanylyl cyclase regulator, forms a monomeric and elongated four-helix bundle.J. Biol. Chem. 2019; 294 (30559291): 2318-2328
- Purification and identification of photoreceptor guanylate cyclase.J. Biol. Chem. 1991; 266 (1673683): 8634-8637
- A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration.J. Biol. Chem. 2019; 294 (30622141): 3476-3488
- Factors that determine Ca2+ sensitivity of photoreceptor guanylyl cyclase. Kinetic analysis of the interaction between the Ca2+-bound and the Ca2+-free guanylyl cyclase activating proteins (GCAPs) and recombinant photoreceptor guanylyl cyclase 1 (RetGC-1).Biochemistry. 2004; 43 (15504042): 13796-13804
- Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase.J. Biol. Chem. 2006; 281 (16793776): 23830-23841
- Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1): The role of individual EF-hands.J. Biol. Chem. 2008; 283 (18541533): 21747-21757
- Identification of target binding site in photoreceptor guanylyl cyclase activating protein 1 (GCAP1).J. Biol. Chem. 2014; 289 (24567338): 10140-10154
- Evaluating the role of retinal membrane guanylyl cyclase 1 (RetGC1) domains in binding guanylyl cyclase-activating proteins (GCAPs).J. Biol. Chem. 2015; 290 (25616661): 6913-6924
- Dimerization domain of retinal membrane guanylyl cyclase 1 (RetGC1) is an essential part of guanylyl cyclase-activating protein (GCAP) binding interface.J. Biol. Chem. 2015; 290 (26100624): 19584-19596
- Quantitative colocalization analysis of confocal fluorescence microscopy images.Curr. Prot. Cell Biol. 2011; 52 (21898338): 4.16.1-4.16.16
- The R838S mutation in retinal guanylyl cyclase 1 (RetGC1) alters calcium sensitivity of cGMP synthesis in the retina and causes blindness in transgenic mice.J. Biol. Chem. 2016; 291 (27703005): 24504-24516
- Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases.J. Biol. Chem. 1999; 274 (10383444): 19329-19337
- Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.Structure. 2007; 15 (17997965): 1392-1402
- The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.J. Mol. Biol. 2006; 359 (16626734): 266-275
- Instead of binding calcium, one of the EF-hand structures in guanylyl cyclase activating protein-2 is required for targeting photoreceptor guanylyl cyclase.J. Biol. Chem. 2001; 276 (11584009): 48143-48148
- Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy.Invest. Ophthal. Vis. Sci. 2012; 53 (22531706): 3463-3472
- Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.Proc. Natl. Acad. Sci. U. S. A. 1997; 94 (9391039): 13414-13419
- Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase.Proc. Natl. Acad. Sci. U. S. A. 1998; 95 (9600905): 5993-5997
- Antagonistic regulation of trafficking to Caenorhabditis elegans sensory cilia by a retinal degeneration 3 homolog and retromer.Proc. Natl. Acad. Sci. U. S. A. 2018; 115 (29282322): E438-E447
- Control of the nucleotide cycle in photoreceptor cell extracts by retinal degeneration protein 3.Front. Mol. Neurosci. 2018; 11 (29515371): 52
- Recombination and mutagenesis of DNA sequences using PCR.in: McPherson M.J. Directed Mutagenesis: A Practical Approach. Oxford University Press, Oxford, England1991: 217-250
- Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors.J. Biol. Chem. 2004; 279 (14993224): 16903-16906
Article info
Publication history
Footnotes
Author contributions—I. V. P. and A. M. D. data curation; I. V. P. and A. M. D. formal analysis; I. V. P. investigation; I. V. P. and A. M. D. methodology; I. V. P. and A. M. D. writing-original draft; A. M. D. conceptualization; A. M. D. supervision; I. V. P. and A. M. D. funding acquisition; A. M. D. project administration; A. M. D. writing-review and editing.
Funding and additional information—This work was supported by NEI, National Institutes of Health Grant EY011522 (to A. M. D.), by Pennsylvania Department of Health CURE formula grant (to A. M. D.), and Salus University Research Fund (to I. V. P.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: RD3
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy