- Bevers E.M.
- Wiedmer T.
- Comfurius P.
- Zhao J.
- Smeets E.F.
- Schlegel R.A.
- Schroit A.J.
- Weiss H.J.
- Williamson P.
- Zwaal R.F.
- Sims P.J.
Results and discussion
Overall structure of the outward-open conformation
ATP11 C E2P | |
---|---|
Data collection | |
Number of crystals | 1,588 |
Resolution (Å) | 4.7 × 4.2 × 3.9 (4.9–4.7a, 4.4–4.2b, 4.0–3.9c) |
Space group | P 212121 |
Cell dimensions | |
a, b, c (Å) | 100.46, 232.82, 498.89 |
α, β, γ (˚) | 90, 90, 90 |
Rmerge | 1.141 (–) |
Rpim | 0.0419 (–) |
I/σI | 15.88 (6.00a, 1.82b, 0.21c) |
CC1/2 | 0.92 (0.993a, 0.964b, 0.864c) |
Completeness (%) | 71.32 (81.84a, 35.29b, 11.64c) |
Redundancy | 776.9 (788.8a, 759.4b, 698.5c) |
Refinement | |
Resolution (Å) | 50–3.9 (4.0–3.9) |
No. of reflections | 82,706,647 (7,342,288) |
Rwork/Rfree (%) | 27.9/34.8 (26.8/32.6) |
Wilson B-factor (Å2) | 98.19 |
No. of atoms | 45,171 |
Protein | 44,727 |
Ligands | 444 |
Average B-factor | 163.19 |
Protein (Å2) | 163.10 |
Ligands (Å2) | 172.65 |
Root mean square deviation | |
Bond lengths (Å) | 0.007 |
Bond angles (˚) | 1.35 |

Outward-open conformation


Electron densities in the crevice and its extension


PtdSer binding at the exoplasmic cavity
PtdSer occlusion site
The transport mechanism of ATP11C and P4-flippases

Experimental procedures
Protein expression and purification
Gene editing for CDC50A
Crystallization and data collection
Structural determination and analysis
Activity assay using recombinant proteins
Flippase assay
Thermal stability
Data availability
Acknowledgments
Supplementary Material
References
- The distribution and function of phosphatidylserine in cellular membranes.Annu. Rev. Biophys. 2010; 39 (20192774): 407-427
- Lipid flippases and their biological functions.Cell. Mol. Life Sci. 2006; 63 (17103115): 2908-2921
- An apoptotic “eat me” signal: phosphatidylserine exposure.Trends Cell Biol. 2015; 25 (26437594): 639-650
- Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.Science. 2014; 344 (24904167): 1164-1168
- The complex of phosphatidylinositol 4,5-bisphosphate and calcium ions is not responsible for Ca2+-induced loss of phospholipid asymmetry in the human erythrocyte: a study in Scott syndrome, a disorder of calcium-induced phospholipid scrambling.Blood. 1995; 86 (7655025): 1983-1991
- Phospholipid scramblases supplementary issue: cellular anatomy of lipid traffic.Lipid Insights. 2015; 8s1 (LPI.S31785–44)
- A subfamily of P-type ATPases with aminophospholipid transporting activity.Science. 1996; 272 (8633245): 1495-1497
- Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine Flippase in photoreceptor disc membranes.J. Biol. Chem. 2009; 284 (19778899): 32670-32679
- Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).FASEB J. 2019; 33 (30509129): 3087-3096
- Evolution of P-type ATPases.Biochim. Biophys. Acta. 1998; 1365 (9693719): 37-45
- Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution.Nature. 2000; 405 (10864315): 647-655
- Crystal structure of the sodium–potassium pump.Nature. 2007; 450 (18075585): 1043-1049
- Crystal structures of the gastric proton pump.Nature. 2018; 556 (29618813): 214-229
- P4-ATPases as phospholipid flippases-structure, function, and enigmas.Front. Physiol. 2016; 7 (27458383): e275
- Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae.Mol. Biol. Cell. 2004; 15 (15090616): 3418-3432
- CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery.J. Biol. Chem. 2010; 285 (20961850): 40562-40572
- The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.J. Biol. Chem. 2018; 293 (29276178): 2172-2182
- Human type IV P-type ATPases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium.J. Biol. Chem. 2016; 291 (26567335): 762-772
- Placentation defects are highly prevalent in embryonic lethal mouse mutants.Nature. 2018; 555 (29539633): 463-468
- ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes.Nat. Immunol. 2011; 12 (21423173): 441-449
- The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow.Nat. Immunol. 2011; 12 (21423172): 434-440
- X-linked cholestasis in mouse due to mutations of the P4-ATPase ATP11C.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21518881): 7890-7895
- Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span.J. Biol. Chem. 2014; 289 (24898253): 19531-19537
- ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.Haematologica. 2016; 101 (26944472): 559-565
- Critical role of a transmembrane lysine in aminophospholipid transport by mammalian photoreceptor P4-ATPase ATP8A2.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22307598): 1449-1454
- Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23302692): E358-E367
- Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24706822): E1334-E1343
- Structure and autoregulation of a P4-ATPase lipid flippase.Nature. 2019; 571 (31243363): 366-370
- Cryo-EM structures capture the transport cycle of the P4-ATPase flippase.Science. 2019; 365 (31416931): 1149-1155
- BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies.Protein Expr. Purif. 2008; 62 (18782620): 160-170
- HiLiDe-systematic approach to membrane protein crystallization in lipid and detergent.Cryst. Growth Des. 2011; 11: 2098-2106
- Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study.FEBS Lett. 2001; 505: 129-135
- Protein-phospholipid interplay revealed with crystals of a calcium pump.Nature. 2017; 545 (28467821): 193-198
- ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase has a compact conformation resistant to proteinase K, V8 protease, and trypsin.FEBS Lett. 2001; 489 (11165264): 277-282
- MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Nucleic Acid Res. 2002; 30 (12136088): 3059-3066
- How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump.Proc. Natl. Acad. Sci. U.S.A. 2007; 104 (18077416): 19831-19836
- Death by caspase dimerization.Adv Exp. Med. Biol. 2012; 747 (22949111): 55-73
- Phospholipid flippase ATP11C is endocytosed and downregulated following Ca2+-mediated protein kinase C activation.Nat. Commun. 2017; 8 (29123098): 1423
- A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening.Structure. 2012; 20 (22884106): 1293-1299
- Conformational fluctuations of the Ca2+-ATPase in the native membrane environment: effects of pH, temperature, catalytic substrates, and thapsigargin.J. Biol. Chem. 2008; 283 (17993458): 1189-1196
- Mechanism of the E2 to E1 transition in Ca2+ pump revealed by crystal structures of gating residue mutants.Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 12722-12727
- Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27432949): E4460-E4466
- Asparagine 905 of the mammalian phospholipid flippase ATP8A2 is essential for lipid substrate–induced activation of ATP8A2 dephosphorylation.J. Biol. Chem. 2019; 294 (30760526): 5970-5979
- Phospholipid flipping involves a central cavity in P4 ATPase.Sci. Rep. 2017; 7 (29247234): 17621
- Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping.Prog. Lipid Res. 2016; 64 (27528189): 69-84
- The structure of the potassium channel: molecular basis of K+ conduction and selectivity.Science. 1998; 280 (9525859): 69-77
- A single K+-binding site in the crystal structure of the gastric proton pump.eLife. 2019; 8 (31436534): e47701
- Enhanced aromatic sequons increase oligosaccharyltransferase glycosylation efficiency and glycan homogeneity.Chem. Biol. 2015; 22 (26190824): 1052-1062
- Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.Nat. Protoc. 2014; 9 (25299155): 2574-2585
- The ID23-2 structural biology microfocus beamline at the ESRF.J. Synchrotron Radiat. 2010; 17 (20029119): 107-118
- ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography.Acta Crystallogr. Sect. D Struct. Biol. 2019; 75 (30821703): 138-150
- KAMO: towards automated data processing for microcrystals.Acta Crystallogr. Sect. D Struct. Biol. 2018; 74 (29717715): 441-449
- XDS.Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (16690741): 8060-8065
- Coot: model-building tools for molecular graphics.Acta Crystallogr. Sect. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr. Sect. D Biol. Crystallogr. 2011; 67 (21460454): 355-367
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- UCSF Chimera: a visualization system for exploratory research and analysis.J. Comput. Chem. 2004; 25 (15264254): 1605-1612
- Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins.Structure. 2006; 14 (16615909): 673-681
- Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (30355768): 12212-12217
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—H. N., K. I., K. S., K. H., and K. A. data curation; H. N., K. I., K. S., and K. A. formal analysis; H. N., K. I., K. S., and K. A. investigation; H. N., K. S., K. H., and K. A. methodology; K. I., K. H., and K. A. validation; K. S. resources; K. S. and K. A. writing-review and editing; Y. F., S. N., and K. A. conceptualization; Y. F., S. N., and K. A. supervision; Y. F., S. N., and K. A. funding acquisition; K. A. visualization; K. A. writing-original draft; K. A. project administration
Funding and additional information—This work was supported by Grants-in-Aid for the Scientific Research Grant 17H03653 (to K. A.), grants from the Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS) from the Japan Agency for Medical Research and Development (AMED), Takeda Science Foundation, Uehara Science Foundation, The Naito Foundation (to K. A.), the Core Research for Evolutional Science and Technology from JST Grant JPMJCR14M4 (to S. N. and K. A.), Grants-in-Aid for Scientific Research (S), the Japan New Energy and Industrial Technology Development Organization (NEDO), and the Japan Agency for Medical Research and Development (AMED) (to Y. F.). This work is a part of projects 2018B2703 and 2019B2707 at SPring-8. This work was supported in part by the Platform Project for Supporting Drug Discovery and Life Science Research (BINDS) from AMED under Grant number JP18am0101070 (to K. A.).
Conflict of interest—Y. F. is a director of CeSPIA Inc.
Abbreviations—The abbreviations used are: PtdSer
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy