Reply to Rutter et al.: The roles of cytosolic and intramitochondrial Ca$^{2+}$ and the mitochondrial Ca$^{2+}$-uniporter (MCU) in the stimulation of mammalian oxidative phosphorylation

DOI 10.1074/jbc.RL120.014342

Frank N. Gellerich1,2*, Marten Szibor3,4, Zemfira Gizatullina1,2, Volkmar Lessmann5,6, Michael Schwarzer4,*, Torsten Doenst4, Stefan Vielhaber1,7,*, and Wolfram S. Kunz2,*

From the 1Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany, the 2Leibniz-Institute for Neurobiology, Magdeburg, Germany, the 3Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland, the 4Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany, the 5Institute of Physiology, Otto-von-Guericke-University, Magdeburg, Germany, the 6Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany, and the 7Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany

Each model used in the work referred to by Rutter et al. (1) addressed certain aspects of mitochondrial biology, and together, they fully support the conclusions made. Please note that we describe Ca$^{2+}$-mediated regulation of oxidative phosphorylation (OXPHOS) fluxes (2, 3) and do not question Ca$^{2+}$-responsiveness of pyruvate dehydrogenase enzyme activity (4). To address concerns such as those raised by Rutter et al. (1), we studied glutamate/malate-dependent OXPHOS in the absence of exogenous pyruvate in mitochondria, omitted pyruvate from cell experiments, and implemented the working rat heart model perfused by Krebs–Henseleit (glucose) buffer. This unequivocally demonstrates in a broad range of models that MAS (malate-aspartate shuttle) inhibition induces a state of mitochondrial pyruvate starvation (3).

An unresolved observation is that mitochondria of MCU knockout mice show negligible activity of Ca$^{2+}$-uptake (5), which we confirm (3). We attributed this activity to residual expression of wild-type Mcu transcripts (3) as the result of a rare event of gene-trap excision during mRNA splicing, since this activity was sensitive to ruthenium red, an inhibitor of the mitochondrial Ca$^{2+}$-uniporter (MCU) in the stimulation of mammalian oxidative phosphorylation. J. Biol. Chem. 295, 10506–10506

*For correspondence: Frank N. Gellerich, Frank.Gellerich@med.ovgu.de.