Introduction
Results
The PupR CCSSD comprises two subdomains, both of which are required for binding the PupB NTSD


Protein | CD analyses (Nres) | X-ray structure (Nres) | ||||||
---|---|---|---|---|---|---|---|---|
Helix | Strand | Coil + turn | Total | Helix | Strand | Coil + turn | Total | |
CCSSD | 16 | 89 | 113 | 218 | 31 | 112 | 76 | 219 |
NTSD | 16 | 30 | 36 | 82 | 25 | 24 | 33 | 82 |
Complex | 55 | 100 | 145 | 300 | 56 | 136 | 109 | 301 |
Interaction of the PupR CCSSD with the PupB NTSD stabilizes the sigma regulator
NTSD (μm) | CCSSD (μm) | LIF | Kd (μm) | ΔH (kJ/mol) | ΔS (J/mol·K) | ΔG (kJ/mol) | |
---|---|---|---|---|---|---|---|
Set 1 (3 runs) | 28 | 220 | 0.128 | 0.69 [0.42, 1.11] | −73.99 [−80.99, −68.27] | −138.83 [-158.94, −122.93] | −33.990 [−35.196, −32.843] |
27.5 | 220 | 0.00 | |||||
42 | 235 | 0.051 |

The X-ray crystal structure of the PupR CCSSD:PupB NTSD reveals a unique fold and topological arrangement of subdomains within the PupR CCSSD
Native | Se-Met derivative | |
---|---|---|
Data collection | ||
Beamline | 24-ID-E | 24-ID-C |
Wavelength (Å) | 0.9792 | 0.9792 |
Space group | P212121 | P212121 |
Unit-cell parameters (Å, deg) | 43.4, 44.6, 141.0 α, β, γ = 90 | 43.6, 44.7, 141.3 α, β, γ = 90 |
Resolution range (Å) | 42.5–1.76 (1.767–1.761) | 141.34–1.51 (1.53–1.51) |
Total observations | 190,024 (1895) | 258,089 (2,816) |
Unique observations | 27,078 (2741) | 43,910 (1,511) |
Multiplicity | 7.0 (6.9) | 5.9 (1.9) |
Completeness (%) | 96.9 (99.3) | 98.0 (70.2) |
CC(1/2) | 0.999 (0.966) | 0.999 (0.765) |
Rmerge (%) | 5.6 (26.8) | 5.2 (40.1) |
Rmerge (anom, %) | – | 4.5 (42.9) |
Mean I/σI | 25.2 (6.8) | 18.9 (1.6) |
Data processing program | AutoPROC | HKL2000 |
Refinement | ||
Refinement program | PHENIX | PHENIX |
Resolution range (Å) | 42.5–1.76 (1.82–1.76) | 42.6–1.56 (1.614–1.558) |
Molecules per asymmetric unit | 2 | 2 |
Rwork (%) | 16.0 | 15.3 |
Rfree (%) | 20.9 | 18.4 |
RMSD stereochemistry | ||
Bond lengths (Å) | 0.011 | 0.018 |
Bond angles (deg) | 1.21 | 1.96 |
No. of atoms | 2670 | 2787 |
PupR CCSSD:PupB NTSD | 2331 | 2412 |
Ligands (tartrate) | 20 | 20 |
Waters | 319 | 355 |
Total average B (Å2) | 20.2 | 18.1 |
PupR CCSSD | 19.1 | 16.1 |
PupB NTSD | 23.4 | 18.6 |
Tartrate | 23.5 | 20.0 |
Waters | 28.8 | 27.4 |
Ramachandran plot (%) | ||
Preferred | 98 | 98 |
Allowed | 2 | 2 |
Outliers | 0 | 0 |
PDB code | 6OVK | 6OVM |


The PupR CCSSD:PupB NTSD interaction interface
Small angle X-ray scattering coupled to size exclusion chromatography (SEC-SAXS) indicates the PupR CCSSD is partially flexible

Confirmation of the PupR CCSSD:PupB NTSD interaction interface

Discussion

Materials and methods
Cloning of PupR CCSSD constructs
Protein expression and purification of PupB NTSD, MBP-tagged PupR CCSSD, and PupR CCSSD
Preparation of selenomethionine-derivatized PupR CCSSD
Co-expression and affinity pulldown assays of PupR CCSSD:PupB NTSD complexes
CD spectroscopy and thermal denaturation of PupR CCSSD, PupB NTSD, and PupR CCSSD:PupB NTSD
ITC to quantify affinity of MBP-tagged PupR CCSSD binding to PupB NTSD
Crystallization, data collection, and structure solution of the PupR CCSSD:PupB NTSD complex
- Brünger A.T.
- Adams P.D.
- Clore G.M.
- DeLano W.L.
- Gros P.
- Grosse-Kunstleve R.W.
- Jiang J.-S.
- Kuszewski J.
- Nilges M.
- Pannu N.S.
- Read R.J.
- Rice L.M.
- Simonson T.
- Warren G.L.
SEC-SAXS measurements and analysis
Site-directed mutagenesis of PupR CCSSD and PupB NTSD
Data availability
Author contributions
Acknowledgments
Supplementary Material
References
- TonB-dependent transporters: regulation, structure, and function.Annu. Rev. Microbiol. 2010; 64 (20420522): 43-60
- Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity.FEMS Microbiol. Rev. 2014; 38 (24923658): 569-597
- Mechanistic implications of the unique structural features and dimerization of the cytoplasmic domain of the Pseudomonas sigma regulator, PupR.Biochemistry. 2015; 54 (26313375): 5867-5877
- Interactions between an anti-sigma protein and two sigma factors that regulate the pyoverdine signaling pathway in Pseudomonas aeruginosa.BMC Microbiol. 2014; 14 (25433393): 287
- Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins.J. Bacteriol. 2000; 182 (10633096): 637-646
- Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa.Mol. Microbiol. 2011; 82 (22040024): 1444-1453
- Analysis of the ferric citrate transport gene promoter of Escherichia coli.J. Bacteriol. 2003; 185 (12644513): 2387-2391
- The Prc and RseP proteases control bacterial cell-surface signalling activity.Environ. Microbiol. 2014; 16 (24373018): 2433-2443
- DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response.Genes Dev. 2002; 16 (12183369): 2156-2168
- Structural basis for the negative regulation of bacterial stress response by RseB.Protein Sci. 2010; 19 (20512978): 1258-1263
- Activation of a cell surface signaling pathway in Pseudomonas aeruginosa requires ClpP protease and new sigma factor synthesis.Front. Microbiol. 2017; 8 (29312164): 2442
- Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains.Environ. Microbiol. 2015; 17 (25581349): 3263-3277
- Self-cleavage of the Pseudomonas aeruginosa cell-surface signaling anti-sigma factor FoxR occurs through an N-O acyl rearrangement.J. Biol. Chem. 2015; 290 (25809487): 12237-12246
- JPred4: a protein secondary structure prediction server.Nucleic Acids Res. 2015; 43 (25883141): W389-W394
- The HMMTOP transmembrane topology prediction server.Bioinformatics. 2001; 17 (11590105): 849-850
- SMART, a simple modular architecture research tool: identification of signaling domains.Proc. Natl. Acad. Sci. U.S.A. 1998; 95 (9600884): 5857-5864
- SMART: recent updates, new developments and status in 2015.Nucleic Acids Res. 2015; 43 (25300481): D257-D260
- NMR assignments of the N-terminal signaling domain of the TonB-dependent outer membrane transducer PupB.Biomol. NMR Assign. 2018; 12 (29071576): 91-94
- Benchmarking fold detection by DaliLite version 5.Bioinformatics. 2019; 35 (31263867): 5326-5327
- Metal import through microbial membranes.Cell. 2004; 116 (14718163): 15-24
- Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli.Mol. Microbiol. 2005; 58 (16313612): 1226-1237
- The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution.J. Mol. Biol. 2005; 347 (15733922): 121-134
- From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor.J. Mol. Biol. 2007; 368 (17349657): 398-406
- Interaction of a partially disordered antisigma factor with its partner, the signaling domain of the TonB-dependent transporter HasR.PloS One. 2014; 9 (24727671): e89502
- Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface.EMBO J. 1995; 14 (7729419): 1430-1438
- Signal transduction pathway of TonB-dependent transporters.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 513-518
- Overcoming expression and purification problems of RhoGDI using a family of “Parallel” expression vectors.Protein Expr. Purif. 1999; 15 (10024467): 34-39
- Staining proteins in gels.in: Ausubel F.M. Brent R. Kingston R.E. Moore D.D. Seidman J.G. Smith J.A. Struhl K. Current protocols in molecular biology. vol. 2. Greene Publishing and Wiley-Interscience, New York, NY1991: 10.6.1-10.6.8
- Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin.J. Mol. Biol. 1993; 229 (7678431): 105-124
- Preparation of selenomethionyl proteins for phase determination.Methods Enzymol. 1997; 276 (27799112): 523-530
- Analysis of protein circular dichroism spectra based on the tertiary structure classification.Anal. Biochem. 2001; 299 (11730356): 271-274
- Isoform-selective and stereoselective inhibition of hypoxia inducible factor-2.J. Med. Chem. 2015; 58 (26226049): 5930-5941
- Fitting two- and three-site binding models to isothermal titration calorimetric data.Methods. 2015; 76 (25484338): 124-136
- Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.Nat. Protoc. 2016; 11 (27055097): 882-894
- SEDPHAT: a platform for global ITC analysis and global multi-method analysis of molecular interactions.Methods. 2015; 76 (25477226): 137-148
- Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT.Acta Crystallogr D Biol. Crystallogr. 2015; 71 (25615855): 3-14
- Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.Protein Sci. 2007; 16 (17192587): 30-42
- Data processing and analysis with the autoPROC toolbox.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 293-302
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16369096): 72-82
- Jnt CCP4/ESF-EACMB Newslett.Protein Crystallogr. 1992; 26: 27-33
- Xds.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124693): 125-132
- Jnt CCP4/ESF-EACMB Newslett.Protein Crystallogr. 1997; 33: 22-24
- Processing of x-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103): 307-326
- Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard.Acta Crystallogr. D Biol. Crystallogr. 2009; 65 (19465773): 582-601
- Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.Acta Crystallogr. D Biol. Crystallogr. 2008; 64 (18094468): 61-69
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.Acta Crystallogr. D Biol. Crystallogr. 2006; 62: 439-450
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20057044): 12-21
- Inference of macromolecular assemblies from crystalline state.J. Mol. Biol. 2007; 372 (17681537): 774-797
- Crystallography & NMR System: a new software suite for macromolecular structure determination.Acta Crystallogr. D Biol. Crystallogr. 1998; 54 (10.1107/S0108767398011465) (9757107): 905-921
- ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.J. Appl. Crystallogr. 2017; 50 (28808438): 1212-1225
- PRIMUS: a Windows PC-based system for small-angle scattering data analysis.J. Appl. Crystallogr. 2003; 36: 1277-1282
- Gnom: a program package for small-angle scattering data-processing.J. Appl. Crystallogr. 1991; 24: 537-540
- SAXSMoW 2.0: online calculator of the molecular weight of proteins in dilute solution from experimental SAXS data measured on a relative scale.Protein Sci. 2019; 28 (30371978): 454-463
- CRYSOL: a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates.J. Appl. Crystallogr. 1995; 28: 768-773
- HingeProt: automated prediction of hinges in protein structures.Proteins. 2008; 70 (17847101): 1219-1227
- FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles.Nucleic Acids Res. 2016; 44 (27151198): W424-W429
- Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering.IUCrJ. 2015; 2 (25866658): 207-217
- SASBDB, a repository for biological small-angle scattering data.Nucleic Acids Res. 2015; 43 (25352555): D357-D363
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health NIGMS Grants 1R15 GM113227, 1R01 GM126207, NIH NIGMS pilot project Grant P30 GM103332 (to C. L. C.), North Dakota EPSCoR Grant FAR0025216 (to J. L. J.), and National Institutes of Health NIGMS Grant 1R15 GM122035 and National Science Foundation Grant MCB-1413525 (to S. S.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1–S3 and Figs. S1–S6.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy