- s: X-ray crystallography
- NMR
- molecular dynamics simulation
- Skp1
- SCF
- glycogenin
- cytoplasmic glycosylation
- post-translational modification
- Toxoplasma
- Pythium
- X-ray crystallography
- nuclear magnetic resonance (NMR)
- molecular dynamics
- glycosyltransferase
- Toxoplasma gondii
- E3 ubiquitin ligase
- post-translational modification (PTM)
Introduction
- Lévesque C.A.
- Brouwer H.
- Cano L.
- Hamilton J.P.
- Holt C.
- Huitema E.
- Raffaele S.
- Robideau G.P.
- Thines M.
- Win J.
- Zerillo M.M.
- Beakes G.W.
- Boore J.L.
- Busam D.
- Dumas B.
- et al.
Results
The fifth and final Skp1 sugar is an α-linked Gal and depends on TgGat1

Description | Name | Parental strain | Genotype | Gene targeted | Selection marker | Reference |
---|---|---|---|---|---|---|
RH (type 1) | WT | 21 | ||||
Δgat1/RH | MM12, cl.A8 | RH | Δgat1 | gat1 | DHFR | This report |
gat1+/Δgat1/RH | MM21, cl.E12 | MM21 | Δuprt/gat1::gat1-Ty | uprt | Δuprt | This report |
RHΔΔ | RH | Δku80/Δhxgprt | 22 | |||
Δgat1-1/RHΔΔ | KR10, cl.A1 | RHΔΔ | Δku80/Δgat1 | gat1 | HXGPRT | This report |
Δgat1-2/RHΔΔ | MM16, cl.B7 | RHΔΔ | Δku80/Δhxgprt/Δgat1 | gat1 | DHFR | This report |
gat1+/Δgat1-2/ RHΔΔ | MM24, cl.G10 | MM16 | Δku80/Δhxgprt/Δuprt/tub::gat1-3×HA | uprt | Δuprt | This report |
Me49-RFP (type 2) | MM8, cl.A10 | Me49 | rfp+ | 23 | ||
Δgat1/Me49-RFP | MM14, cl.B5 | Me49-RFP | Δgat1 | gat1 | DHFR | This report |
Toxoplasma growth depends partially on gat1

Gat1 is closely related to glycogenin

Gat1 is a terminal Skp1 α-galactosyltransferase

Skp1 is the only detectable substrate of Gat1 in parasite extracts

Gat1 generates a Galα1,3Glc linkage

Comparison of crystal structures explains the catalytic differences between Gat1 and glycogenin


Computational modeling predicts the specificity of Gat1 toward the Skp1 tetrasaccharide

The Toxoplasma glycan influences Skp1 helix-8 extension via sugar-protein contacts
Glycan | Protein | Average energy | r2 | |
---|---|---|---|---|
kcal/mol | ||||
Polar | αGal | Asn-147 | −0.6 | 0.73 |
Glc | Asn-150 | −0.6 | 0.60 | |
Fuc | Asn-150 | −1.2 | 0.50 | |
Nonpolar | αGal | Asn-147 | −0.81 | 0.73 |
GlcNAc | Phe-152 | −1.5 | 0.66 | |
βGal | Phe-152 | −1.1 | 0.64 | |
GlcNAc | Asn-150 | −0.65 | 0.54 | |
αGal | Ile-148 | −0.67 | 0.52 |

Discussion
Experimental procedures
Maintenance of host cells and parasite manipulations
Disruption and complementation of gat1
Bradyzoite induction
Periodic acid staining
Expression and purification of recombinant TgGat1 and PuGat1
SDS-PAGE and Western blotting
Preparation of Skp1 peptides
Treatment of TgSkp1 peptides with α-gal
MS of TgSkp1 peptides
Enzyme assays
Sugar nucleotide hydrolysis
Glycosyltransferase activity toward small glycosides
Glycosyltransferase activity toward GlFGaGn-Skp1
Glycosyltransferase activity toward parasite extracts
MS of Skp1
Structure determination of PuGat1
Glycan docking
Sedimentation velocity studies
Molecular dynamics simulations
Computational analysis
Phylogenetic analysis of enzyme sequences
Data availability
Acknowledgments
Supplementary Material
References
- 2-Oxoglutarate-dependent oxygenases.Annu. Rev. Biochem. 2018; 87 (29494239): 585-620
- New horizons in hypoxia signaling pathways.Exp. Cell Res. 2017; 356 (28315322): 116-121
- Oxygen sensing by protozoans: how they catch their breath.Curr. Opin. Microbiol. 2015; 26 (25988702): 41-47
- A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin.Biochim. Biophys. Acta. 2004; 1695 (15571813): 133-170
- Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium.Development. 2007; 134 (17699611): 3349-3358
- Nucleocytoplasmic O-glycosylation in protists.Curr. Opin. Struct. Biol. 2019; 56 (31128470): 204-212
- O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases.J. Biol. Chem. 2017; 292 (28928219): 18897-18915
- Prolyl hydroxylation- and glycosylation-dependent functions of Skp1 in O2-regulated development of Dictyostelium.Dev. Biol. 2011; 349 (20969846): 283-295
- Glycosylation of Skp1 affects its conformation and promotes binding to a model F-box protein.Biochemistry. 2014; 53 (24506136): 1657-1669
- Glycosylation of Skp1 promotes formation of Skp1/cullin-1/F-box protein complexes in Dictyostelium.Mol. Cell. Proteomics. 2015; 14 (25341530): 66-80
- Toxoplasmosis.Handb. Clin. Neurol. 2013; 114 (23829904): 125-145
- The Skp1 protein from Toxoplasma is modified by a cytoplasmic prolyl 4-hydroxylase associated with oxygen sensing in the social amoeba Dictyostelium.J. Biol. Chem. 2012; 287 (22648409): 25098-25110
- The E3 ubiquitin ligase adaptor protein Skp1 Is glycosylated by an evolutionarily conserved pathway that regulates protist growth and development.J. Biol. Chem. 2016; 291 (26719340): 4268-4280
- Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Toxoplasma Skp1 E3 ubiquitin ligase subunit.J. Biol. Chem. 2017; 292 (28928220): 18644-18659
- Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.Genome Biol. 2010; 11 (20626842): R73
- The Top 10 oomycete pathogens in molecular plant pathology.Mol. Plant Pathol. 2015; 16 (25178392): 413-434
- Pythium insidiosum: an overview.Vet. Microbiol. 2010; 146 (20800978): 1-16
- Skp1 isoforms are differentially modified by a dual function prolyl 4-hydroxylase/N-acetylglucosaminyltransferase in a plant pathogen.Glycobiology. 2019; 29 (31281925): 705-714
- Symbol nomenclature for graphical representations of glycans.Glycobiology. 2015; 25 (26543186): 1323-1324
- CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology.J. Biol. Chem. 2019; 294 (30463938): 1104-1125
- Toxoplasmic encephalitis in children.J. Am. Med. Assoc. 1941; 116: 801-807
- Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.Eukaryot. Cell. 2009; 8 (19218423): 520-529
- Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection.Nat. Med. 2013; 19 (23708291): 713-721
- Lytic cycle of Toxoplasma gondii: 15 years later.Annu. Rev. Microbiol. 2015; 69 (26332089): 463-485
- Signaling cascades governing entry into and exit from host cells by Toxoplasma gondii.Annu. Rev. Microbiol. 2019; 73 (31500539): 579-599
- The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis.J. Exp. Bot. 2011; 62 (21220783): 1775-1801
- Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii.Biochimie. 2003; 85 (12770773): 353-361
- Toxoplasma gondii requires glycogen phosphorylase for balancing amylopectin storage and for efficient production of brain cysts.mBio. 2017; 8
- Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry.J. Mol. E. 2005; 60 (15785854): 257-267
- Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae.Plant J. 2019; 97 (30351485): 485-499
- Overexpression of a glycogenin, CmGLG2, enhances floridean starch accumulation in the red alga Cyanidioschyzon merolae.Plant. Signal. Behav. 2019; 14 (30938572): 1596718
- XtalPred: a web server for prediction of protein crystallizability.Bioinformatics. 2007; 23 (17921170): 3403-3405
- A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis.FASEB J. 1988; 2: 3097-3103
- Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis.FEBS Lett. 2005; 579 (15811343): 2208-2214
- Mechanism of glycogenin self-glucosylation.Arch. Biochem. Biophys. 1995; 319 (7771798): 293-298
- Properties of carbohydrate-free recombinant glycogenin expressed in an Escherichia coli mutant lacking UDP-glucose pyrophosphorylase activity.FEBS Lett. 1994; 352 (7925977): 222-226
- Amylopectin biogenesis and characterization in the protozoan parasite Toxoplasma gondii, the intracellular development of which is restricted in the HepG2 cell line.Microbes Infect. 2005; 7 (15716062): 41-48
- Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program CASPER.Carbohydr Res. 2006; 341 (16564037): 1003-1010
- Emerging structural insights into glycosyltransferase-mediated synthesis of glycans.Nat. Chem. Biol. 2019; 15 (31427814): 853-864
- Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin.J. Mol. Biol. 2002; 319 (12051921): 463-477
- Inference of macromolecular assemblies from crystalline state.J. Mol. Biol. 2007; 372 (17681537): 774-797
- The intramolecular autoglucosylation of monomeric glycogenin.Biochem. Biophys. Res. Comm. 2008; 371 (18439421): 328-332
- Glycoside hydrolases and glycosyltransferases: families and functional modules.Curr. Opin. Struct. Biol. 2001; 11 (11785761): 593-600
- Palladium-mediated enzyme activation suggests multiphase initiation of glycogenesis.Nature. 2018; 563 (30356213): 235-240
- Novel regulation of Skp1 by the Dictyostelium AgtA α-galactosyltransferase involves the Skp1-binding activity of its WD40 repeat domain.J. Biol. Chem. 2014; 289 (24550398): 9076-9088
- The new tree of eukaryotes.Trends Ecol. E. 2020; 35 (31606140): 43-55
- Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group.Genome Biol. E. 2018; 10 (29360967): 427-433
- Structural basis for the recruitment of glycogen synthase by glycogenin.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24982189): E2831-E2840
- Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae.FEBS Lett. 2005; 579 (16004992): 3999-4004
- Lack of glycogenin causes glycogen accumulation and muscle function impairment.Cell Metab. 2017; 26 (28683291): 256-266.e4
- Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii.Methods Mol. Biol. 2017; 1498 (27709570): 79-103
- The Toxoplasma vacuolar H+-ATPase regulates intracellular pH and impacts the maturation of essential secretory proteins.Cell Reports. 2019; 27 (31091451): 2132-2146.e7
- Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro.Exp. Parasitol. 1994; 78 (8206135): 361-370
- Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein.Infect. Immun. 2001; 69 (11119543): 501-507
- Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts.Clin. Microbiol. Rev. 1998; 11 (9564564): 267-299
- Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases.Glycobiology. 2017; 27 (28177478): 206-212
- Chemical synthesis of a glycopeptide derived from Skp1 for probing protein specific glycosylation.Chemistry. 2015; 21 (26179871): 11779-11787
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- The PyMOL Molecular Graphics System. Schroedinger, LLC, New York2018 (version 2.1)
- A series of PDB related databases for everyday needs.Nucleic Acids Res. 2015; 43 (25352545): D364-D368
- Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.Biopolymers. 1983; 22 (6667333): 2577-2637
- GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA2014
- Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity.J. Comput. Chem. 2009; 30 (19399780): 2785-2791
- Protein identification and analysis tools on the ExPASy server.in: Walker J.M. The Proteomics Protocols Handbook. Humana Press, Totowa, NJ2005: 571-607
- Computer-aided interpretation of analytical sedimentation data for proteins.in: Harding S.E. Rowe A.J. Horton J. Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge, UK1992: 90-125
- Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling.Biophys. J. 2000; 78 (10692345): 1606-1619
- Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.Biophys. J. 2011; 101 (21843480): 892-898
- Calculations and publication-quality illustrations for analytical ultracentrifugation data.Methods Enzymol. 2015; 562: 109-133
- The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.Bioinformatics. 2006; 22 (16301204): 195-201
- Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase.Mol. Cell. 2005; 20 (16209941): 9-19
- UCSF Chimera—a visualization system for exploratory research and analysis.J. Comput. Chem. 2004; 25 (15264254): 1605-1612
- Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born.J. Chem. Theory Comput. 2012; 8 (22582031): 1542-1555
- The Amber biomolecular simulation programs.J. Comput. Chem. 2005; 26 (16200636): 1668-1688
- GLYCAM06: a generalizable biomolecular force field. Carbohydrates.J. Comput. Chem. 2008; 29 (17849372): 622-655
- Comparison of simple potential functions for simulating liquid water.J. Chem. Phys. 1983; 79: 926-935
- Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems.J. Chem. Physics. 1993; 98: 10089-10092
- A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen‐like peptides.J. Comput. Chem. 2005; 26 (16170799): 1612-1616
- Effects of glycosylation of (2S,4R)-4-hydroxyproline on the conformation, kinetics, and thermodynamics of prolyl amide isomerization.J. Am. Chem. Soc. 2007; 129 (17764180): 11670-11671
- VMD: visual molecular dynamics.J. Mol. Graphics. 1996; 14 (8744570): 33-38
- 3D implementation of the symbol nomenclature for graphical representation of glycans.Glycobiology. 2016; 26 (27514939): 786-787
- PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput. 2013; 9 (26583988): 3084-3095
- MMPBSA.py: an efficient program for end-state free energy calculations.J. Chem. Theory Comput. 2012; 8 (26605738): 3314-3321
- An improved general amino acid replacement matrix.Mol. Biol. E. 2008; 25 (18367465): 1307-1320
- MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Mol. Biol. E. 2016; 33 (27004904): 1870-1874
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—M. M., H. W. K., D. T., K. R., H. v. d. W., R. J. W., Z. A. W., and C. M. W. conceptualization; M. M., H. W. K., D. T., M. O. S., E. G.-P., K. R., and C. M. W. formal analysis; M. M. validation; M. M., H. W. K., D. T., M. O. S., E. G.-P., K. R., P. Z., N. G. D., H. v. d. W., H. T. I., and J. N. G. investigation; M. M., H. W. K., D. T., M. O. S., E. G.-P., K. R., P. Z., N. G. D., H. v. d. W., H. T. I., J. N. G., L. W., R. J. W., Z. A. W., and C. M. W. methodology; M. M., H. W. K., D. T., M. O. S., E. G.-P., K. R., and C. M. W. writing-original draft; M. M., H. W. K., D. T., R. J. W., Z. A. W., and C. M. W. writing-review and editing; H. W. K., M. O. S., E. G.-P., P. Z., and C. M. W. data curation; D. T., E. G.-P., and C. M. W. visualization; L. W., R. J. W., Z. A. W., and C. M. W. supervision; C. M. W. resources; C. M. W. funding acquisition; C. M. W. project administration.
Funding and additional information—M. M. was supported in part by National Institutes of Health (NIH) Grant T32-AI060546; H. W. K. was supported in part by NIH Grant T32-GM107004; and K. H. was supported by National Science Foundation REU Grant DBI-1426834. This project was supported in part by NIH Grant RO1-GM084383 (to C. M. W. and Ira Blader), Grant #14-140 from the Mizutani Foundation for Glycoscience (to C. M. W. and Ira Blader), NIH Grant P41-GM103490 (to L. W., senior investigator), NIH Grant 8P41-GM103390 (Resource for Integrated Glycotechnology to J. H. Prestegard), NIH Grant R01-GM114298 (to Z. A. W.), and NIH Grant S10-OD021762 (to John Rose). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present addresses: David Thieker, Dept. of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
Present addresses: M. Osman Sheikh, Amicus Therapeutics, Philadelphia, Pennsylvania, USA.
Present addresses: Kazi Rahman, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
Present addresses: H. Travis Ichikawa, New Materials Institute, University of Georgia, Athens, Georgia, USA.
Abbreviations—The abbreviations used are: SCF
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy