Results
GRF zinc fingers bind ssDNA and fork-like structures

Structural basis for ssDNA binding by the NEIL3 GRF domain

Zn-SAD | Native | |
---|---|---|
Data collection | ||
Space group | I4 | I4 |
Cell dimensions | ||
a, b, c (Å) | 93.608, 93.608, 63.718 | 93.494, 93.494, 63.646 |
α, β, γ (°) | 90.00, 90.00, 90.00 | 90.00, 90.00, 90.00 |
Wavelength | 1.27059 | 1.0000 |
Resolution (Å) | 2.80 (2.85–2.80) | 2.60 (2.64–2.60) |
Rsym | 0.056 (0.727) | 0.038 (0.656) |
Rmeas | 0.060 (0.799) | 0.043 (0.742) |
Rpim | 0.022 (0.326) | 0.020 (0.344) |
CC1/2 | 0.810 | 0.840 |
I/σI | 30.8 (2.2) | 31.4 (2.0) |
Completeness (%) | 99.9 (99.7) | 99.8 (100.0) |
Redundancy | 7.4 (5.9) | 4.5 (4.6) |
Refinement | ||
Resolution (Å) | 34.95–2.60 (2.70–2.60) | |
No. reflections | 7550 (469) | |
Rwork/Rfree | 0.227/0.266 (0.271/0.306) | |
No. atoms | ||
Protein | 1332 | |
Solvent | 0 | |
B-factors | ||
Protein | 51.9 | |
Solvent | ||
RMSDs | ||
Bond lengths (Å) | 0.003 | |
Bond angles (°) | 0.675 | |
Ramachandran plot (%) | ||
Favored | 89.9 | |
Allowed | 10.1 | |
Outliers | 0 |

The GRF domain inhibits NEIL3 glycosylase activity


Discussion
- Skarpengland T.
- Holm S.
- Scheffler K.
- Gregersen I.
- Dahl T.B.
- Suganthan R.
- Segers F.M.
- Ostlie I.
- Otten J.J.
- Luna L.
- Ketelhuth D.F.
- Lundberg A.M.
- Neurauter C.G.
- Hildrestrand G.
- Skjelland M.
- et al.
- Chakraborty A.
- Wakamiya M.
- Venkova-Canova T.
- Pandita R.K.
- Aguilera-Aguirre L.
- Sarker A.H.
- Singh D.K.
- Hosoki K.
- Wood T.G.
- Sharma G.
- Cardenas V.
- Sarkar P.S.
- Sur S.
- Pandita T.K.
- Boldogh I.
- et al.
Experimental procedures
Protein purification
X-ray crystallography
Electrophoretic mobility shift assays
Fluorescence anisotropy
Glycosylase activity assays
Data availability
Acknowledgments
Supplementary Material
References
- Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage.Mutat. Res. 2013; 743–744 (23274422): 4-11
- Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (11904416): 3523-3528
- Identification of a zinc finger domain in the human NEIL2 (Nei-like-2) protein.J. Biol. Chem. 2004; 279 (15339932): 47132-47138
- The biochemical role of the human NEIL1 and NEIL3 DNA glycosylases on model DNA replication forks.Genes (Basel). 2019; 10 (31018584): 315
- Emerging roles of DNA glycosylases and the base excision repair pathway.Trends Biochem. Sci. 2019; 44 (31078398): 765-781
- Eukaryotic endonuclease VIII–like proteins: new components of the base excision DNA repair system.Biochemistry (Mosc.). 2011; 76 (21568842): 80-93
- Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin.DNA Repair (Amst.). 2013; 12 (23755964): 1159-1164
- The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro in vivo.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20185759): 4925-4930
- Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA.Structure. 2013; 21 (23313161): 247-256
- Expression and purification of NEIL3, a human DNA glycosylase homolog.Protein Expr. Purif. 2009; 65 (19121397): 160-164
- Human Nei-like protein NEIL3 has AP lyase activity specific for single-stranded DNA and confers oxidative stress resistance in Escherichia coli mutant.Genes Cells. 2009; 14 (19170771): 261-270
- Expression and purification of active mouse and human NEIL3 proteins.Protein Expr. Purif. 2012; 84 (22569481): 130-139
- Release from quiescence stimulates the expression of human NEIL3 under the control of the Ras dependent ERK-MAP kinase pathway.DNA Repair (Amst.). 2012; 11 (22365498): 401-409
- Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells.Cell Rep. 2012; 2 (22959434): 503-510
- Endonuclease VIII–like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (22065741): 18802-18807
- Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA.Nucleic Acids Res. 2002; 30 (12433996): 4926-4936
- Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3.DNA Repair (Amst.). 2020; 86 (31923807): 102752
- Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context.J. Biol. Chem. 2013; 288 (23926102): 27263-27272
- The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures.Nucleic Acids Res. 2015; 43 (25813041): 4039-4054
- NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis.Cell Rep. 2017; 20 (28854357): 2044-2056
- Expression patterns of Neil3 during embryonic brain development and neoplasia.BMC Neurosci. 2009; 10 (19426544): 45
- High expression of DNA repair pathways is associated with metastasis in melanoma patients.Oncogene. 2008; 27 (17891185): 565-573
- Analysis of loss of heterozygosity on chromosome 4q in hepatocellular carcinoma using high-throughput SNP array.Oncol. Rep. 2010; 23 (20043106): 445-455
- DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes.Epigenomics. 2014; 6 (24811787): 179-191
- Genetic variants in CD44 and MAT1A confer susceptibility to acute skin reaction in breast cancer patients undergoing radiation therapy.Int. J. Radiat. Oncol. Biol. Phys. 2017; 97 (27816361): 118-127
- Loss of NEIL3 DNA glycosylase markedly increases replication associated double strand breaks and enhances sensitivity to ATR inhibitor in glioblastoma cells.Oncotarget. 2017; 8 (29348879): 112942-112958
- Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase.Cell. 2016; 167 (27693351): 498-511
- TRAIP is a master regulator of DNA interstrand crosslink repair.Nature. 2019; 567 (30842657): 267-272
- Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair.Nucleic Acids Res. 2020; 48 (31980815): 3014-3028
- Mechanism of replication-coupled DNA interstrand crosslink repair.Cell. 2008; 134 (18805090): 969-980
- Advances in understanding the complex mechanisms of DNA interstrand cross-link repair.Cold Spring Harb. Perspect. Biol. 2013; 5 (24086043): a012732
- Interstrand DNA-DNA cross-link formation between adenine residues and abasic sites in duplex DNA.J. Am. Chem. Soc. 2014; 136 (24506784): 3483-3490
- Chemical structure and properties of interstrand cross-links formed by reaction of guanine residues with abasic sites in duplex DNA.J. Am. Chem. Soc. 2015; 137 (25710271): 3933-3945
- Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residue in duplex DNA.Nucleic Acids Res. 2015; 43 (25779045): 3434-3441
- Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.Nucleic Acids Res. 2017; 45 (28531327): 6275-6283
- Characterization of a novel DNA glycosylase from S. sahachiroi involved in the reduction and repair of azinomycin B induced DNA damage.Nucleic Acids Res. 2016; 44 (26400161): 187-197
- Structure of a DNA glycosylase that unhooks interstrand cross-links.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28396405): 4400-4405
- Escherichia coli YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks.Nucleic Acids Res. 2020; 48 (32409837): 7005-7017
- APE2 Zf-GRF facilitates 3'–5' resection of DNA damage following oxidative stress.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28028224): 304-309
- C-terminal domains of Escherichia coli topoisomerase I belong to the zinc-ribbon superfamily.J. Mol. Biol. 2000; 299 (10873443): 1165-1177
- Essential functions of C terminus of Drosophila topoisomerase IIIα in double holliday junction dissolution.J. Biol. Chem. 2012; 287 (22511792): 19346-19353
- Zinc (II) coordination in Escherichia coli DNA topoisomerase I is required for cleavable complex formation with DNA.J. Biol. Chem. 1991; 266 (1650356): 14317-14320
- The role of the carboxyl-terminal amino acid residues in Escherichia coli DNA topoisomerase III-mediated catalysis.J. Biol. Chem. 1996; 271 (8621552): 9039-9045
- Endogenous DNA 3‘ blocks are vulnerabilities for BRCA1 and BRCA2 deficiency and are reversed by the APE2 nuclease.Mol. Cell. 2020; 78 (32516598): 1152-1165.e8
- Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I.Nucleic Acids Res. 2015; 43 (26490962): 11031-11046
- Solution structure of the C-terminal single-stranded DNA-binding domain of Escherichia coli topoisomerase I.Biochemistry. 1995; 34 (7779808): 7622-7628
- NEIL3-dependent regulation of cardiac fibroblast proliferation prevents myocardial rupture.Cell Rep. 2017; 18 (28052262): 82-92
- Effects of airborne toxicants on pulmonary function and mitochondrial DNA damage in rodent lungs.Mutagenesis. 2017; 32 (27993944): 343-353
- Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery.Neuropharmacology. 2018; 134 (29128308): 208-217
- Expression signatures of DNA repair genes correlate with survival prognosis of astrocytoma patients.Tumour Biol. 2017; 39 (28378638): 4552
- Ginsenoside Rd attenuates DNA damage by increasing expression of DNA glycosylase endonuclease VIII–like proteins after focal cerebral ischemia.Chin. Med. J. (Engl.). 2016; 129 (27503022): 1955-1962
- Genetic cause of immune dysregulation: one gene or two?.J. Clin. Invest. 2016; 126 (27760052): 4065-4067
- Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice.Sci. Rep. 2016; 6 (27328939): 28337
- Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity.J. Clin. Invest. 2016; 126 (27760045): 4219-4236
- Neil3 induced neurogenesis protects against prion disease during the clinical phase.Sci. Rep. 2016; 6 (27886261): 37844
- Polymorphism of the XRCC1 gene is associated with susceptibility and short-term recovery of ischemic stroke.Int. J. Environ. Res. Public Health. 2016; 13 (27763529): 1016
- Single nucleotide polymorphisms in the REG-CTNNA2 region of chromosome 2 and NEIL3 associated with impulsivity in a Native American sample.Genes Brain Behav. 2016; 15 (27167163): 568-577
- Genetic variants in the DNA repair gene NEIL3 and the risk of myocardial infarction in a nested case-control study. The HUNT Study.DNA Repair (Amst.). 2015; 28 (25703835): 21-27
- Increased expression of inflammatory genes in the neonatal mouse brain after hyperoxic reoxygenation.Pediatr. Res. 2015; 77 (25423075): 326-333
- Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation.J. Biol. Chem. 2015; 290 (26245904): 24636-24648
- Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103): 307-326
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.Nucleic Acids Res. 2007; 35 (17452350): W375-W383
- Collaboration gets the most out of software.eLife. 2013; 2 (24040512): e01456
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—A. A. R., J. L. W., and B. H. G. data curation; A. A. R., J. L. W., B. H. G., R. S. W., and B. F. E. formal analysis; A. A. R., K. S. G., R. S. W., and B. F. E. funding acquisition; A. A. R. investigation; A. A. R., J. L. W., and B. H. G. writing-original draft; A. A. R., J. L. W., B. H. G., K. S. G., R. S. W., and B. F. E. writing-review and editing; T. H., K. S. G., R. S. W., and B. F. E. resources; R. S. W. and B. F. E. supervision; A. A. R., J. L. W., R. S. W., and B. F. E. validation; B. F. E. conceptualization; B. F. E. visualization; B. F. E. project administration.
Funding and additional information—This work was supported by National Institutes of Health Grants R01GM131071 and P01CA092584 (to B. F. E.) and NIEHS, National Institute of Health Intramural Program Grant 1Z01ES102765 (to R. S. W.). A. A. R. was supported by Vanderbilt Molecular Biophysics Training Program Grant T32GM08320 and National Science Foundation Graduate Research Fellowship DGE-1445197. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: ssDNA
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy