- Nickerson K.P.
- Senger S.
- Zhang Y.
- Lima R.
- Patel S.
- Ingano L.
- Flavahan W.A.
- Kumar D.K.V.
- Fraser C.M.
- Faherty C.S.
- Sztein M.B.
- Fiorentino M.
- Fasano A.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
- Lindesmith L.C.
- McDaniel J.R.
- Changela A.
- Verardi R.
- Kerr S.A.
- Costantini V.
- Brewer-Jensen P.D.
- Mallory M.L.
- Voss W.N.
- Boutz D.R.
- Blazeck J.J.
- Ippolito G.C.
- Vinje J.
- Kwong P.D.
- Georgiou G.
- et al.
- Estes M.K.
- Ettayebi K.
- Tenge V.R.
- Murakami K.
- Karandikar U.
- Lin S.C.
- Ayyar B.V.
- Cortes-Penfield N.W.
- Haga K.
- Neill F.H.
- Opekun A.R.
- Broughman J.R.
- Zeng X.L.
- Blutt S.E.
- Crawford S.E.
- et al.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
HIE ID | Secretor | Lewis | HIE HBGA | HuNoV Propagation ( 10 , 14 )
Genetic manipulation of human intestinal enteroids demonstrates the necessity of a functional fucosyltransferase 2 gene for secretor-dependent human norovirus infection. | ||||
---|---|---|---|---|---|---|---|---|
FUT2 genotype | Phenotype | FUT3 genotype | Phenotype | ABO genotype | Phenotype | Summary | GII.4 SYD | |
1J | Se, se385 | Positive | le202,314, le202,314 | Negative | OA | A | A | + |
J2 | Se, se428 | Positive | Le, Le | Positive | OB | B Leb | B Leb | + |
J4 | se428, se428 | Negative | Le, le202,314 | Positive | OO | Lea | Lea | − |
J6 | Se, Se | Positive | Le, le59,508 | Positive | OA | A Leb | A Leb | + |
J8 | se428, se428 | Negative | Le, le202,314 | Positive | OO | Lea | Lea | − |
J10 | se428, se428 | Negative | le484,667, le59,508 | Negative | OA | A | A | − |
J4FUT2 | Se, se428, se428 | Positive | Le, le202,314 | Positive | OO | Leb | Leb | + |
Results
Pheno- and genotypic histo-blood group status of HIEs
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
Structural characterization of major lipids of HIEs

Structural characterization of sphingolipids of HIEs
Antibody staining of HBGA epitopes of lipid extracts from HIEs


GII.4 Sydney VLPs bind to pure GSLs and lipid extracts of HIEs


Discussion
- Nickerson K.P.
- Senger S.
- Zhang Y.
- Lima R.
- Patel S.
- Ingano L.
- Flavahan W.A.
- Kumar D.K.V.
- Fraser C.M.
- Faherty C.S.
- Sztein M.B.
- Fiorentino M.
- Fasano A.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
Experimental procedures
Establishment of human intestinal enteroids
- Estes M.K.
- Ettayebi K.
- Tenge V.R.
- Murakami K.
- Karandikar U.
- Lin S.C.
- Ayyar B.V.
- Cortes-Penfield N.W.
- Haga K.
- Neill F.H.
- Opekun A.R.
- Broughman J.R.
- Zeng X.L.
- Blutt S.E.
- Crawford S.E.
- et al.
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
Production and characterization of secretor-negative J4 HIE cultures transduced to express functional FUT2
- Haga K.
- Ettayebi K.
- Tenge V.R.
- Karandikar U.C.
- Lewis M.A.
- Lin S.C.
- Neill F.H.
- Ayyar B.V.
- Zeng X.L.
- Larson G.
- Ramani S.
- Atmar R.L.
- Estes M.K.
3′ characterization of HIE pheno- and genotypes
Lipid extracts from HIEs
Mild alkaline hydrolysis
Reference GSLs
Production of HuNoV VLPs
TLC separation and detection of lipids and GSLs
Chromatogram-binding assay with antibodies (TLC-CBA)
Chromatogram-binding assay with VLPs (TLC-CBA)
Lipid analysis
Lipid vesicle preparation
HuNoV VLP binding to HIE lipids vesicles
Data availability
Acknowledgments
Supplementary Material
References
- Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.Gastroenterology. 2011; 141 (21889923): 1762-1772
- Human enteroids: preclinical models of non-inflammatory diarrhea.Stem Cell Res. Ther. 2013; 4 (24564938): S3
- Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract.Exp. Biol. Med. (Maywood). 2014; 239 (24719375): 1124-1134
- Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.Nat. Rev. Gastroenterol. Hepatol. 2016; 13 (27677718): 633-642
- Long-term renewable human intestinal epithelial stem cells as monolayers: a potential for clinical use.J. Pediatr. Surg. 2016; 51 (26995514): 995-1000
- The contributions of human mini-intestines to the study of intestinal physiology and pathophysiology.Annu. Rev. Physiol. 2017; 79 (28192061): 291-312
- Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner.Proc. Natl. Acad. Sci. U. S. A. 2017; 114 (28137842): 1672-1677
- Human intestinal enteroids: new models to study gastrointestinal virus infections.Methods Mol. Biol. 2019; 1576 (28361480): 229-247
- Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells.J. Virol. 2018; 92 (29467318): e00218-e00250
- Replication of human noroviruses in stem cell-derived human enteroids.Science. 2016; 353 (27562956): 1387-1393
- Modelling cryptosporidium infection in human small intestinal and lung organoids.Nat. Microbiol. 2018; 3 (29946163): 814-823
- A stem-cell-derived platform enables complete cryptosporidium development in vitro and genetic tractability.Cell Host Microbe. 2019; 26 (31231046): 123-134.e8
- Salmonella Typhi colonization provokes extensive transcriptional changes aimed at evading host mucosal immune defense during early infection of human intestinal tissue.EBioMedicine. 2018; 31 (29735417): 92-109
- Genetic manipulation of human intestinal enteroids demonstrates the necessity of a functional fucosyltransferase 2 gene for secretor-dependent human norovirus infection.mBio. 2020; 11 (32184242): e00220-e00251
Centers for Disease Control and Prevention (2018) Norovirus Worldwide. https://www.cdc.gov/norovirus/trends-outbreaks/worldwide.html.
- Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype.J. Virol. 2003; 77 (14645568): 13117-13124
- Fatal case of norovirus gastroenteritis due to severe dehydration.J. Pediatr. Infect. Dis. Soc. 2014; 3 (26625459): 358-359
- Prolonged norovirus infection after pancreas transplantation: a case report and review of chronic norovirus.Transpl. Infect. Dis. 2016; 18 (26460906): 98-104
- Fatal case of acute gastroenteritis with multiple viral coinfections.J. Clin. Virol. 2016; 74 (26655270): 54-56
- Chronic norovirus infection as a risk factor for secondary lactose maldigestion in renal transplant recipients: a prospective parallel cohort pilot study.Transplantation. 2017; 101 (27482964): 1455-1460
- Human noroviruses: recent advances in a 50-year history.Curr. Opin. Infect. Dis. 2018; 31 (30102614): 422-432
- Potential use of glycosphingolipids of human meconium for blood group chemotyping of single individuals.FEBS Lett. 1981; 128 (7274458): 71-74
- Molecular characterization of cell surface antigens of fetal tissue: detailed analysis of glycosphingolipids of meconium of a human O Lea–b+ secretor.J. Biol. Chem. 1981; 256 (6782103): 3512-3524
- Structures of blood group glycosphingolipids of human small intestine: a relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor.J. Biol. Chem. 1987; 262 (3571286): 6758-6765
- Glycolipids of human large intestine: difference in glycolipid expression related to anatomical localization, epithelial/non-epithelial tissue and the ABO, Le and Se phenotypes of the donors.Biochimie. 1988; 70 (3149523): 1565-1574
- Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells.J. Biol. Chem. 1989; 264 (2466830): 5720-5735
- Glycosphingolipid composition of epithelial cells isolated along the villus axis of small intestine of a single human individual.Glycobiology. 2012; 22 (22833314): 1721-1730
- Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract.Biochem. J. 2004; 384 (15361072): 307-316
- Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation.Emerg. Infect. Dis. 2018; 24 (30014841): 1453-1464
- Sera antibody repertoire analyses reveal mechanisms of broad and pandemic strain neutralizing responses after human norovirus vaccination.Immunity. 2019; 50 (31216462): 1530-1541.e8
- Human norovirus neutralized by a monoclonal antibody targeting the histo-blood group antigen pocket.J. Virol. 2019; 93 (30541855): e02118-e02174
- Human norovirus cultivation in nontransformed stem cell-derived human intestinal enteroid cultures: success and challenges.Viruses. 2019; 11 (31336765): 638
- Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids.Proc. Natl. Acad. Sci. U. S. A. 2020; 117 (31896578): 1700-1710
- Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology.J. Biol. Chem. 2016; 291 (26677228): 3759-3766
- Structural characterization of lactotetraosylceramide, a novel glycosphingolipid isolated from human meconium.J. Biol. Chem. 1979; 254 (479198): 9311-9316
- Chemical fingerprinting of non-acid glycosphingolipids in meconium of a human individual of blood group B Lea–b+ and secretor.Biochim. Biophys. Acta. 1982; 712 (7126605): 274-282
- Chemical fingerprinting of glycosphingolipids in meconium of a human blood group O Lea−b+ secretor.Biochim. Biophys. Acta. 1982; 710 (7074123): 428-436
- Molecular characterization of cell-surface antigens of human fetal tissue: meconium, a rich source of epithelial blood-group glycolipids.FEBS Lett. 1978; 87 (631343): 283-287
- Interaction of single viruslike particles with vesicles containing glycosphingolipids.Phys. Rev. Lett. 2011; 107 (22107678): 188103
- Lewis blood group fucolipids and their isomers from human and canine intestine.J. Biol. Chem. 1982; 257 (6798032): 755-760
- The mucosa of the small intestine: development of the cellular lipid composition during enterocyte differentiation and postnatal maturation].Reprod. Nutr. Dev. 1990; 30 (2291805): 551-576
- Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells.J. Cell Biol. 1996; 132 (8603914): 813-821
- Lipid raft organization and function in brush borders of epithelial cells.Mol. Membr. Biol. 2006; 23 (16611582): 71-79
- Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function.World J. Gastroenterol. 2007; 13 (17876892): 5217-5225
- Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity.J. Clin. Invest. 2018; 128 (29771685): 3298-3311
- Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions.EMBO J. 1986; 5 (3519211): 483-489
- Polarity of the Forssman glycolipid in MDCK epithelial cells.Biochim. Biophys. Acta. 1987; 930 (3040119): 154-166
- The glycosynapse.Proc. Natl. Acad. Sci. U. S. A. 2002; 99 (11773621): 225-232
- A lipid matrix model of membrane raft structure.Prog. Lipid Res. 2010; 49 (20478335): 390-406
- Lipid sorting in epithelial cells.Biochemistry. 1988; 27 (3064805): 6197-6202
- Functional rafts in cell membranes.Nature. 1997; 387 (9177342): 569-572
- Membrane properties of sphingomyelins.FEBS Lett. 2002; 531 (12401199): 33-37
- Membrane properties of d-erythro-N-acyl sphingomyelins and their corresponding dihydro species.Biophys. J. 2001; 80 (11325733): 2327-2337
- Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection.Nat. Microbiol. 2018; 3 (30127493): 1109-1114
- Ceramide formation mediated by acid sphingomyelinase facilitates endosomal escape of caliciviruses.Virology. 2015; 483 (25985440): 218-228
- Norovirus GII.4 virus-like particles recognize galactosylceramides in domains of planar supported lipid bilayers.Angew. Chem. Int. Ed. Engl. 2012; 51 (23097253): 12020-12024
- QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics.Glycobiology. 2009; 19 (19625485): 1176-1184
- Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent α1,2-fucosylated glycosphingolipids.Biochim. Biophys. Acta Biomembr. 2013; 1828 (23528203): 1840-1845
- Interaction of virus-like particles with vesicles containing glycolipids: kinetics of detachment.J. Phys. Chem. B. 2015; 119 (26260011): 11466-11472
- Histo-blood group antigen presentation is critical for binding of norovirus VLP to glycosphingolipids in model membranes.ACS Chem. Biol. 2017; 12 (28294600): 1288-1296
- Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature. 2009; 459 (19329995): 262-265
- Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications.Science. 2013; 340 (23744940): 1190-1194
- Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27681626): E6248-E6255
- Serological correlate of protection against norovirus-induced gastroenteritis.J. Infect. Dis. 2010; 202 (20815703): 1212-1218
- A simple method for the isolation and purification of total lipides from animal tissues.J. Biol. Chem. 1957; 226 (13428781): 497-509
- Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system.Blood. 2013; 121 (23255552): 1459-1468
- Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein.J. Virol. 1992; 66 (1328679): 6527-6532
- Characterization of cross-reactive norovirus-specific monoclonal antibodies.Clin. Vaccine Immunol. 2015; 22 (25428247): 160-167
- Separation of monoglycosylceramides (cerebrosides) of bovine kidney into subgroups and characterization by mass spectrometry.Biochim. Biophys. Acta. 1973; 306 (4736543): 317-328
- Detection of blood group type glycosphingolipid antigens on thin-layer plates using polyclonal antisera.J. Immunol. Methods. 1985; 83 (4056402): 37-42
- Mouse monoclonal antibody F-3 recognizes the difucosyl type-2 blood group structure.Immunogenetics. 1983; 17 (6188690): 537-541
- Norwalk virus-like particles bind specifically to A, H and difucosylated Lewis but not to B histo-blood group active glycosphingolipids.Glycoconj. J. 2009; 26 (19387828): 1171-1180
- Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry.Proc. Natl. Acad. Sci. U. S. A. 1997; 94 (9122196): 2339-2344
- Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer.Anal. Chem. 2002; 74 (11924996): 941-949
- Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning.Anal. Chem. 2006; 78 (16944903): 6202-6214
- Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH.FASEB J. 2015; 29 (25609431): 1564-1576
- Rapid separation and quantitation of combined neutral and polar lipid classes by high-performance liquid chromatography and evaporative light-scattering mass detection.J. Chromatogr. B Biomed. Sci. Appl. 1998; 708 (9653942): 21-26
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—I. R., V. R. T., X. Y., K. H., R. L. A., N. L., J. N., M. K. E., M. B., and G. L. conceptualization; I. R., M. H., V. R. T., X. Y., S.-C. L., K. H., R. L. A., N. L., J. N., M. K. E., M. B., and G. L. data curation; I. R. and K. T. software; I. R., K. T., M. H., X. Y., S.-C. L., K. H., R. L. A., J. N., M. K. E., M. B., and G. L. formal analysis; I. R., V. R. T., S.-C. L., K. H., R. L. A., J. N., M. K. E., M. B., and G. L. validation; I. R., K. T., V. R. T., X. Y., K. H., R. L. A., N. L., J. N., M. K. E., and G. L. investigation; I. R., J. N., M. K. E., M. B., and G. L. visualization; I. R., K. T., M. H., V. R. T., X. Y., S.-C. L., K. H., R. L. A., N. L., J. N., M. K. E., M. B., and G. L. methodology; I. R., M. K. E., and G. L. writing-original draft; I. R., K. T., M. H., V. R. T., X. Y., S.-C. L., K. H., R. L. A., N. L., J. N., M. K. E., M. B., and G. L. writing-review and editing; M. H., V. R. T., K. H., R. L. A., N. L., M. K. E., M. B. and G. L. resources; K. H., R. L. A., N. L., J. N., M. K. E., M. B., and G. L. supervision; K. H., R. L. A., N. L., M. K. E., M. B., and G. L. funding acquisition; M. B., R. L. A., N. L., M. K. E., and G. L. project administration.
Funding and additional information—The work was supported by Swedish Research Council Grants K2014-68X-08266-27-4 and 2017-00955 (to G. L); Swedish Foundation for Strategic Research Grant SB12/KF10-0088 (to N. L.); National Institutes of Health Public Health Services Grants PO1 AI057788, U19 AI116497, and P30 DK56338 (to M. K. E.); Cancer Prevention 656 Institute of Texas (CPRIT) Grant RP160283–Baylor College of Medicine Comprehensive Cancer Training Program (to S.-C. L. and M. K. E.); the Swedish state under the agreement between the Swedish government and the county councils, the ALF agreement (ALFGBG_721971) (to G. L.); Swedish Research Council Grant 2017-04029; and the Wallenberg Foundation (to M. B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for Inga Rimkute: ImmunoTechnology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland, USA.
Abbreviations—The abbreviations used are: HIE
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy