- Bruneel A.
- Cholet S.
- Drouin-Garraud V.
- Jacquemont M.L.
- Cano A.
- Mégarbané A.
- Ruel C.
- Cheillan D.
- Dupré T.
- Vuillaumier-Barrot S.
- Seta N.
- Fenaille F.
Results
Inactivation of the SLC35A2 and SLC35A3 genes



Cell line | Nucleotide changes compared with SLC35A3 WT gene | Amino acid changes compared with SLC35A3 WT protein |
---|---|---|
HepG2 A3KO | Deletion of 2 nucleotides | Frameshift, premature stop codon |
HepG2 A2/A3KO | Deletion of 2 nucleotides | Frameshift, premature stop codon |
HEK293T A3KO | Deletion of 38 nucleotides, insertion of 178 nucleotides | Frameshift, premature stop codon |
HEK293T A2/A3KO | Deletion of 57 nucleotides, insertion of 178 nucleotides | Changes in amino acid sequence, premature stop codon |
CHO A3KO | Deletion of 8 nucleotides | Frameshift |
LEC8 A3KO | Deletion of 47 nucleotides | Frameshift |
Analysis of N-glycans






Analysis of O-glycans



Transport assay

Cell line | Inactivated gene | UDP-Gal transport | UDP-GlcNAc transport | Galactosylation of N-glycans | Antennal GlcNAc in N-glycans | Branching of N-glycans | Gal in O-glycans | GlcNAc in O-glycans |
---|---|---|---|---|---|---|---|---|
Lec8 | SLC35A2 | Strongly decreased | Increased | Almost completely blocked | Present | Not affected | Absent | Absent (lack of the respective enzyme) |
CHO A3KO | SLC35A3 | Unchanged | Increased | Unchanged | Present | Subtly affected | Present | Absent (lack of the respective enzyme) |
CHO A2/A3KO | Both SLC35A2 and SLC35A3 | Strongly decreased | Unchanged | Almost completely blocked | Present | Almost completely blocked | Absent | Absent (lack of the respective enzyme) |
HEK293T A2KO | SLC35A2 | Strongly decreased | Unchanged | Completely blocked | Present | Not affected | Absent | Absent (lack of the respective acceptor) |
HEK293T A3KO | SLC35A3 | Unchanged | Decreased to ∼25% | Unchanged | Present | Subtly affected | Present | Present |
HEK293T A2/A3KO | Both SLC35A2 and SLC35A3 | Strongly decreased | Decreased to ∼50% | Completely blocked | Present | Completely blocked | Absent | Absent (lack of the respective acceptor) |
HepG2 A2KO | SLC35A2 | ND | ND | Almost completely blocked | Present | Not affected | Absent | Absent (lack of the respective acceptor) |
HepG2 A3KO | SLC35A3 | ND | ND | Unchanged | Present | Not affected | Present | Present |
HepG2 A2/A3KO | Both SLC35A2 and SLC35A3 | ND | ND | Almost completely blocked | Present | Not affected | Absent | Absent (lack of the respective acceptor) |
Analysis of gene expression

Discussion
- Varki A.
- Schnaar R.L.
Experimental procedures
Cell maintenance, gene inactivation, and transfection
Evaluation of the SLC35A3 and SLC35A2 knockout efficiency
Name | DNA sequence (5′ → 3′) |
---|---|
Human_Exon4_SLC35A3_Fp | GCCCTCAGATTCTCAGCTTG |
Human_Exon4_SLC35A3_Rp | ccagatatttggatcaatagcag |
Human_Exon5_SLC35A3_Fp | GGAAGTATATTTGGATTAATGGGTG |
Human_Exon5_SLC3A3_Rp | ccttgaataaactagatacgagag |
Hamster_SLC35A3_Fp | GAAAACAATGTCCGCCAACC |
Hamster_SLC35A3_Rp | GCCAAGTCACAAGAGTGTG |
Western blotting
Transport assay
Analysis of fluorescently labeled N- and O-glycans
Secreted glycoprotein reporter assay
Quantitative reverse transcriptase–PCR
Analyzed gene | DNA sequence (5′ → 3′) | ||
---|---|---|---|
HEK293T and HepG2 cells | CHO cells | ||
SLC35A5 | Forward | CTGCTAGGTGCCATATTCATT | TGGTCCATTCCTGCCTTTCT |
Reverse | AACACAGAATGACACAAGCAC | TGCGAAGTTTTGGTACTGGC | |
SLC35B4 | Forward | ATGCGCCCGGCCTTGGCGGT | CCATGTTCTTCACCGTGAGC |
Reverse | ACGCTCACGGTGAAGAACATG | ACTGGGAAGTCACCTGCTTT | |
SLC35D1 | Forward | ATGGCGGAAGTTCATAGACGT | CTCTCCTGTGTGATGGGGTT |
Reverse | TGAGCACGCTCTTATTCACCA | GTTTGCTCAGCTGCTCTTCA | |
SLC35D2 | Forward | TCCTTCCTCATCGTGCTTGT | TGCTGACCACCTACGGTTTTC |
Reverse | CAACGTAGAGGAGAGGCAGA | CACGGTGAACATTGGCAAGTC | |
GAPDH | Forward | AGGTCGGAGTCAACGGATTT | GAAAGCTGTGGCGTGATGG |
Reverse | TGACAAGCTTCCCGTTCTCA | TACTTGGCAGGTTTCTCCAG |
Data availability
Acknowledgments
Supplementary Material
References
- Roles of the nucleotide sugar transporters (SLC35 family) in health and disease.Mol. Aspects Med. 2013; 34 (23506892): 590-600
- Nucleotide sugar transporter SLC35 family structure and function.Comp. Struct. Biotechnol. J. 2019; 17 (31462968): 1123-1134
- UDP–N-acetylglucosamine transporter and UDP-galactose transporter form heterologous complexes in the Golgi membrane.FEBS Lett. 2012; 586 (23089177): 4082-4087
- UDP–N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate.J. Biol. Chem. 2013; 288 (23766508): 21850-21860
- UDP-galactose (SLC35A2) and UDP–N-acetylglucosamine (SLC35A3) transporters form glycosylation-related complexes with mannoside acetylglucosaminyltransferases (Mgats).J. Biol. Chem. 2015; 290 (25944901): 15475-15486
- In Situ proximity ligation assay (PLA) analysis of protein complexes formed between Golgi-resident, glycosylation-related transporters and transferases in adherent mammalian cell cultures.Methods Mol. Biol. 2016; 1496 (27632007): 133-143
- N-Acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme–multi-transporter assemblies in Golgi membranes in vivo.Cell. Mol. Life Sci. 2019; 76 (30737517): 1821-1832
- Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus.Annu. Rev. Biochem. 1998; 67 (9759482): 49-69
- Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection.J. Biol. Chem. 2004; 279 (15082721): 26469-26474
- Molecular characterization of human UDP-glucuronic acid/UDP–N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity.FEBS Lett. 2001; 495 (11322953): 87-93
- Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases.Acc. Chem. Res. 2006; 39 (17115720): 805-812
- A missense mutation in the bovine SLC35A3 gene, encoding a UDP–N-acetylglucosamine transporter, causes complex vertebral malformation.Genome Res. 2006; 16 (16344554): 97-105
- Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis.J. Med. Genet. 2013; 50 (24031089): 733-739
- Recessive mutations in SLC35A3 cause early onset epileptic encephalopathy with skeletal defects.Am. J. Med. Genet. A. 2017; 173 (28328131): 1119-1123
- A human case of SLC35A3-related skeletal dysplasia.Am. J. Med. Genet. A. 2017; 173 (28777481): 2758-2762
- Complementarity of electrophoretic, mass spectrometric, and gene sequencing techniques for the diagnosis and characterization of congenital disorders of glycosylation.Electrophoresis. 2018; 39 (29869806): 3123-3132
- Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer.Nat. Commun. 2019; 10 (31604945): 4657
- Structural basis of nucleotide sugar transport across the Golgi membrane.Nature. 2017; 551 (29143814): 521-524
- Structural basis for mammalian nucleotide sugar transport.eLife. 2019; 8 (30985278): e45221
- Structural basis for the delivery of activated sialic acid into Golgi for sialyation.Nat. Struct. Mol. Biol. 2019; 26 (31133698): 415-423
- Molecular cloning of the Golgi apparatus uridine diphosphate–N-acetylglucosamine transporter from Kluyveromyces lactis.Proc. Natl. Acad. Sci. U.S.A. 1996; 93 (8650202): 5963-5968
- The genes for the Golgi apparatus N-acetylglucosaminyltransferase and the UDP–N-acetylglucosamine transporter are contiguous in Kluyveromyces lactis.J. Biol. Chem. 1999; 274 (10037760): 6641-6646
- Identification of a Golgi-localized UDP–N-acetylglucosamine transporter in Trypanosoma cruzi.BMC Microbiol. 2015; 15 (26589870): 269
- A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids.Nat. Plants. 2018; 4 (30224661): 792-801
- Mammalian Golgi apparatus UDP–N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant.Proc. Natl. Acad. Sci. U.S.A. 1998; 95 (9653110): 7888-7892
- Molecular cloning and functional expression of the human Golgi UDP–N-acetylglucosamine transporter.J. Biochem. 1999; 126 (10393322): 68-77
- Gene expression profiling, chromosome assignment and mutational analysis of the porcine Golgi-resident UDP–N-acetylglucosamine transporter SLC35A3.Mol. Membr. Biol. 2007; 24 (17710655): 519-530
- Conserved Glu-47 and Lys-50 residues are critical for UDP–N-acetylglucosamine/UMP antiport activity of the mouse Golgi-associated transporter Slc35a3.J. Biol. Chem. 2019; 294 (31118275): 10042-10054
- Human UDP-galactose translocater: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocater.J. Biochem. 1996; 120 (8889805): 236-241
- Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary cDNAs belonging to the nucleotide-sugar transporter gene family.J. Biochem. 1996; 120 (9010752): 1074-1078
- Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP–sialic acid transporters.J. Biol. Chem. 2001; 276 (11319223): 26291-26300
- Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines.Glycoconj. J. 2011; 28 (21894462): 481-492
- A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex.J. Biol. Chem. 1988; 263 (3141404): 16283-16290
- Lectin-resistant CHO cells: selection of new mutant phenotypes.Somatic Cell Genet. 1983; 9 (6623313): 593-608
- Elucidation of the phenotypic change on the surface of Had-1 cell, a mutant cells line of mouse FM3A carcinoma cells selected by resistance to Newcastle disease virus infection.J. Biochem. 1989; 106 (2808320): 236-247
- Expression of the human UDP-galactose transporter in the Golgi membranes of murine Had-1 cells that lack the endogenous transporter.J. Biochem. 1997; 122 (9399569): 691-695
- Overexpression of UDP-GlcNAc transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation.FEBS Lett. 2011; 585 (21889501): 3090-3094
- UDP-Gal/UDP-GlcNAc chimeric transporter complements mutation defect in mammalian cells deficient in UDP-Gal transporter.Biochem. Biophys. Res. Commun. 2013; 434 (23583405): 473-478
- Short N-terminal region of UDP-galactose transporter (SLC35A2) is crucial for galactosylation of N-glycans.Biochem. Biophys. Res. Commun. 2014; 454 (25451267): 486-492
- An insight into the orphan nucleotide sugar transporter SLC35A4.Biochim. Biophys. Acta Mol. Cell Res. 2017; 1864 (28167211): 825-838
- Cellular O-glycome reporter/amplification to explore O-glycans of living cells.Nat. Methods. 2016; 13 (26619014): 81-86
- SLC35A2-CDG: functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals.Hum. Mutat. 2019; 40 (30817854): 908-925
- Lysine at position 329 within a C-terminal dilysine motif is crucial for the ER localization of human SLC35B4.PLoS One. 2018; 13 (30458018): e0207521
- Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation.J. Cell Sci. 2014; 127 (25271059): 5014-5026
- Subcellular localization of UDP-GlcNAc, UDP-Gal and SLC35B4 transporters.Acta Biochim. Pol. 2011; 58 (21918738): 413-419
- Mechanism of galactosylation in the Golgi apparatus: a Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes.J. Biol. Chem. 1986; 261 (3510203): 96-100
- Mucin biosynthesis: purification and characterization of a mucin β 6N-acetylglucosaminyltransferase.J. Biol. Chem. 1991; 266 (1836212): 23863-23871
- Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation.Cell. 2007; 129 (17418791): 123-134
- Schnauer, R Sialic acids and other nonulosonic acids.in: Varki A. Cummings R.D. Esko J.D. Stanley P. Hart G.W. Aebi M. Darvill A.G. Kinoshita T. Packer N.H. Prestegard J.H. Schnaar R.L. Seeberger P.H. Essentials of Glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY2017 (Chapter 15)
- SLC35A5 protein: a Golgi complex member with putative nucleotide sugar transport activity.Int. J. Mol. Sci. 2019; 20: 276
- Identification and characterization of human Golgi nucleotide sugar transporter SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family.Genomics. 2005; 85 (15607426): 106-116
- Intact Golgi synthesize complex branched O-linked chains on glycoside primers: evidence for the functional continuity of seven glycosyltransferases and three sugar nucleotide transporters.Glycoconj. J. 2001; 18 (12376727): 623-633
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—B. S., D. M.-S., and M. O. conceptualization; B. S. data curation; B. S., P. S., and M. O. formal analysis; B. S., P. S., E. S., A. S., and M. O. investigation; B. S., P. S., T. O., H. H. F., and M. O. writing-review and editing; B. S. and P. S. visualization; D. M.-S. and T. O. writing-original draft; M. O. resources; M. O. supervision; M. O. project administration.
Funding and additional information—This work was supported by National Science Center (Krakow, Poland) Grants 2014/15/B/NZ3/00372 (to M. O.) and 2017/27/N/NZ3/00369 (to B. S.), funds from the Rocket Fund, and National Institutes of Health Grant R01DK099551 (to H. H. F). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: UDP-Gal
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Correction: The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD+.Journal of Biological ChemistryVol. 295Issue 45Open Access
- Correction: Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12.Journal of Biological ChemistryVol. 295Issue 48Open Access
- Correction: Intermittent enzyme replacement therapy prevents Neu1 deficiencyJournal of Biological ChemistryVol. 295Issue 46Open Access
- Correction: Genetic disruption of the small GTPase RAC1 prevents plexiform neurofibroma formation in mice with neurofibromatosis type 17Journal of Biological ChemistryVol. 295Issue 46Open Access