
Results
Unnatural amino acid amber codon suppression strategy
Bicistronic, heat-induced T7 DNA polymerase expression/purification

Plasmid optimizations for amber suppression machinery


- Cellitti S.E.
- Jones D.H.
- Lagpacan L.
- Hao X.
- Zhang Q.
- Hu H.
- Brittain S.M.
- Brinker A.
- Caldwell J.
- Bursulaya B.
- Spraggon G.
- Brock A.
- Ryu Y.
- Uno T.
- Schultz P.G.
- et al.

Other nonplasmid-based optimizations
Large-scale expression and purification of T7 DNA polymerase E514Cou
MS

Fluorescence excitation/emission spectra

Stopped-flow kinetics


Experimental strategy to measure fidelity/correct nucleotide burst experiments


Misincorporation reactions


Fidelity of the WT enzyme versus the E514Cou variant
defined as the probability the enzyme incorporates a mismatch relative to a correct nucleotide. For the pre-steady-state burst experiment for the correct incorporation, both kpol and Kd,app were individually defined so the ratio gives (kpol/Kd,app)Correct. For the misincorporation reaction, neither parameter was individually defined; however, the specificity constant (kpol/Kd,app)Mismatch was well-defined. These constants are reported in Table 1, along with the calculated base substitution fidelity of the WT enzyme and E514Cou variant. The fidelity of both enzymes is on the order of 1 × 10−6 (see Table 1), differing only by a factor of 2 or 3. This shows that our labeling strategy was effective in providing a fluorescence signal upon nucleotide binding without significantly altering the fidelity of the enzyme.
Enzyme | Nucleotide | kpol (s−1) | Kd,app (µm) | kpol/Kd,app (m−1 s−1) | Fidelity |
---|---|---|---|---|---|
WT | Correct (dATP:T) | 181 (154, 221) | 28.1 (20.4, 41.0) | 6.4 × 106 (3.9, 10.8) | 0.61 × 10−6 (1.03, 0.35) |
Mismatch (dATP:A) | – | 3.90 (3.78, 4.02) | |||
E514Cou | Correct (dATP:T) | 202 (188, 225) | 15.0 (12.8, 18.2) | 13.5 × 106 (10.3, 17.6) | 1.56 × 10−6 (2.10, 1.56) |
Mismatch (dATP:A) | – | 21.0 (20.3, 21.7) |
Discussion
Alternative failed strategies
Labeling with 7-HCou
- Cellitti S.E.
- Jones D.H.
- Lagpacan L.
- Hao X.
- Zhang Q.
- Hu H.
- Brittain S.M.
- Brinker A.
- Caldwell J.
- Bursulaya B.
- Spraggon G.
- Brock A.
- Ryu Y.
- Uno T.
- Schultz P.G.
- et al.
Experimental procedures
Preparation of reagents
Cloning and mutagenesis
Oligo No. | Description | Sequence (5′ → 3′) | Method |
---|---|---|---|
1 | pcI(T7x-, bicis.) E514TAG F | GCTACCTACCCGAGATAACGC | IPCR |
2 | pcI(T7x-, bicis.) E514TAG R: | TAAGCAGCTATCTGGTTCTTAGTG | IPCR |
3 | MjTyrRS Y32E F | GATGAAAAATCTGCTGAGATAGGTTTTGAACCAAGTGG | QC |
4 | MjTyrRS Y32E R | CCACTTGGTTCAAAACCTATCTCAGCAGATTTTTCATC | QC |
5 | MjTyrRS L65H/A67G/H70G F | GATTTAGGCGCCTATTTAAACCAGAAAGG | IPCR |
6 | MjTyrRS L65H/A67G/H70G R | ACCCAAATGTATAATTATATCAAATCCAGCATTTTGTAAATC | IPCR |
7 | MjTyrRS F108Y/Q109H F | CATCTTGATAAGGATTATACACTGAATGTCTATAGATTG | IPCR |
8 | MjTyrRS F108Y/Q109H R | ATATTCACTTCCATAAACATATTTTGCCTTTAACC | IPCR |
9 | MjTyrRS D158G/L162G F | TGGTGGCGTTGATGTTGCAGTTG | IPCR |
10 | MjTyrRS D158G/L162G R | TAATGAATGGGATTAACCTGCATTATTGGATAGATAACTTCAG | IPCR |
11 | MjTyrRS D286R F | GTTTAAAAAATGCTGTAGCTGAAGAACTTATAAAGATTTTAGAG | IPCR |
12 | MjTyrRS D286R R | GCATTGGATGCAATTCCTTATTTTTAAATAAACTCTC | IPCR |
13 | pcI EcoRI F | ACGTAGCTTGAATTCATGCAGTAGGGAACTGCCAG | |
14 | pcI NdeI R: | TTGCTCGTTGCATATGAACCTCCTTAGTACATGCAACC | |
15 | CouRS NdeI F | TTCGCTGTGCATATGGACGAATTTGAAATGATAAAGAG | |
16 | CouRS EcoRI R | GGCATGAACCGAATTCAGTTATAATCTCTTTCTAATTGGCTCTAAAATC | |
17 | pSUP-CouRS BamHI F | ATGCTAAGAGGATCCCGATAAGCTTGGTACCGAGCTC | |
18 | pSUP-CouRS SpeI R | TTGGTCTAGCACTAGTTTACAACTTATATCGTATGGGGCTGAC | |
19 | pcI(CouRS) BamHI R | TTTACTAGCTGGATCCCAGGAAACAGCTATGACCATGATTAC | |
20 | pcI(CouRS) SpeI F | TTACGCATACTAGTGTGCAATGTAACATCAGAGATTTTG | |
21 | LIC tRNAopt F: | GAACCACGGAACACAATCAATTCTTGCGGAGAAC | |
22 | LIC tRNAopt R | CGACACGGCAAGACCATTCATGTTGTTGCTC | |
23 | LIC pSUP tRNA F: | TGGTCTTGCCGTGTCGACGAATTTCTGCCATTCATCC | |
24 | LIC pSUP tRNA R | TTGTGTTCCGTGGTTCATCACACTGCTTCCGGTAGTC |
tRNA | Sequence (5′ → 3′) |
---|---|
tRNAMj | CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCGCUGGUUCAAAUCCGGCCCGCCGGACCA |
tRNAopt | CCGGCGGUAGUUCAGCAGGGCAGAACGGCGGACUCUAAAUCCGCAUGGCAGGGGUUCAAAUCCCCUCCGCCGGACCA |
Expression tests to monitor amber suppression efficiency
Large-scale expression of T7 DNA polymerase WT and E514Cou
Purification of T7 DNA polymerase
Expression and purification of thioredoxin
MS
Preparation of oligonucleotide substrates
Name | Sequence (5′ → 3′) | Extinction coefficient, 260 nm (m−1 cm−1) |
---|---|---|
27 | CCGTCGCAGCCGTCCAACCAACTCAAC | 245,700 |
27dd | CCGTCGCAGCCGTCCAACCAACTCAACdd | 245,700 |
FAM-27 | [6-carboxyfluorescein]-CCGTCGCAGCCGTCCAACCAACTCAAC | 266,660 |
45-18T | GGACGGCATTGGATCGATGTTGAGTTGGTTGGACGGCTGCGACGG | 433,700 |
45-18A | GGACGGCATTGGATCGAAGTTGAGTTGGTTGGACGGCTGCGACGG | 437,600 |
Kinetic measurements
Steady-state fluorescence excitation/emission scans
Data analysis
Data availability
Supplementary Material
References
- Mismatched and matched dNTP incorporation by DNA polymerase β proceed via analogous kinetic pathways.Biochemistry. 2008; 47 (18717589): 9718-9727
- Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.Biochemistry. 1991; 30 (1846298): 511-525
- An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.Biochemistry. 1991; 30 (1846299): 526-537
- A new paradigm for DNA polymerase specificity.Biochemistry. 2006; 45 (16893169): 9675-9687
- Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution.Nature. 1998; 391 (9440688): 251-258
- Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction.Biochemistry. 1991; 30 (1988042): 538-546
- A reexamination of the nucleotide incorporation fidelity of DNA polymerases.Biochemistry. 2002; 41 (12186540): 10571-10576
- Exploring the reaction mechanism of HIV reverse transcriptase with a nucleotide substrate.J. Phys. Chem. B. 2020; 124 (32364738): 4270-4283
- DNA polymerase β: Multiple conformational changes in the mechanism of catalysis.Biochemistry. 1997; 36 (9305982): 11891-11900
- DNA polymerase β: 5. Dissecting the functional roles of the two metal ions with Cr(III)dTTP.J. Am. Chem. Soc. 1998; 120: 235-236
- Use of 2-aminopurine and tryptophan fluorescence as probes in kinetic analyses of DNA polymerase β.Biochemistry. 2002; 41 (12220188): 11226-11235
- Nucleotide-dependent conformational change governs specificity and analog discrimination by HIV reverse transcriptase.Proc. Natl. Acad. Sci. U. S. A. 2010; 107 (20385846): 7734-7739
- Prechemistry barriers and checkpoints do not contribute to fidelity and catalysis as long as they are not rate limiting.Theor. Chem. Acc. 2012; 1311288
- Kinetic analysis for the new enzymology: Using computer simulation to learn kinetics and solve mechanisms.KinTek Corporation, Austin, U. S. A2019
- Role of induced fit in limiting discrimination against AZT by HIV reverse transcriptase.Biochemistry. 2011; 50 (21548586): 5008-5015
- Investigation of rate parameters in chemical reactions of excited hydroxycoumarins in different solvents.J. Photochem. 1974; 3: 55-69
- pH effects on fluorescence of umbelliferone.Anal. Chem. 1970; 42: 990-993
- Site-specific labeling of T7 DNA polymerase with a conformationally sensitive fluorophore and its use in detecting single-nucleotide polymorphisms.Anal. Biochem. 2009; 384 (18834851): 136-144
- An expanding genetic code.Methods. 2005; 36 (16076448): 227-238
- Coexpression of the subunits of T7 DNA polymerase from an artificial operon allows one-step purification of active gp5/Trx complex.Protein Expr. Purif. 2006; 47 (16300964): 264-272
- High-cell density shake-flask expression and rapid purification of the large fragment of Thermus aquaticus DNA polymerase I using a new chemically and temperature inducible expression plasmid in Escherichia coli.Protein Expr. Purif. 2009; 63 (18952180): 120-127
- A genetically encoded fluorescent amino acid.Proc. Natl. Acad. Sci. U. S. A. 2006; 103 (16785423): 9785-9789
- An enhanced system for unnatural amino acid mutagenesis in E. coli.J. Mol. Biol. 2010; 395 (19852970): 361-374
- Condensed E. coli cultures for highly efficient production of proteins containing unnatural amino acids.Bioorg. Med. Chem. Lett. 2010; 20 (20805030): 5613-5616
- Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids.Angew. Chem. Int. Ed. Engl. 2009; 48 (19856359): 9148-9151
- Ligation-independent cloning of PCR products (LIC-PCR).Nucleic Acids Res. 1990; 18 (2235490): 6069-6074
- Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.Nat. Methods. 2006; 3 (16554830): 263-265
- In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy.J. Am. Chem. Soc. 2008; 130 (18576636): 9268-9281
- Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.Nat. Struct. Biol. 2003; 10 (12754495): 425-432
- Mechanism and fidelity of HIV reverse transcriptase.J. Biol. Chem. 1992; 267 (1281479): 25988-25997
- FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data.Anal. Biochem. 2009; 387 (19168024): 30-41
- Ten commandments: lessons from the enzymology of DNA replication.J. Bacteriol. 2000; 182 (10850972): 3613-3618
- Addition of the keto functional group to the genetic code of Escherichia coli.Proc. Natl. Acad. Sci. U. S. A. 2003; 100 (12518054): 56-61
- Ketoxime coupling of p-acetylphenylalanine at neutral pH for site-directed spin labeling of human sulfite oxidase.J. Phys. Chem. B. 2014; 118 (24902036): 7077-7084
- Enhanced catalysis of oxime-based bioconjugations by substituted anilines.Bioconjug. Chem. 2014; 25 (24320725): 93-101
- A genetically encoded direct sensor of antibody-antigen interactions.Chembiochem. 2009; 10 (19672911): 2162-2164
- Biosynthesis of a fluorescent protein with extreme pseudo-stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore.J. Am. Chem. Soc. 2011; 133 (21341705): 3708-3711
- K+ preference at the NaK channel entrance revealed by fluorescence lifetime and anisotropy analysis of site-specifically incorporated (7-hydroxycoumarin-4-yl)ethylglycine.Chem. Commun. 2015; 51 (26382573): 15971-15974
- Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids.J. Am. Chem. Soc. 2013; 135 (23941571): 12924-12927
- Biosynthesis of a novel glutamate racemase containing a site-specific 7-hydroxycoumarin amino acid: Enzyme–ligand promiscuity revealed at the atomistic level.ACS Cent. Sci. 2015; 1 (26539562): 364-373
- Improving a natural enzyme activity through incorporation of unnatural amino acids.J. Am. Chem. Soc. 2011; 133 (21162578): 326-333
- Dissecting the contribution of release factor interactions to amber stop codon reassignment efficiencies of the Methanocaldococcus jannaschii orthogonal pair.Genes. 2018; 9: 546
- Genomically recoded organisms expand biological functions.Science. 2013; 342 (24136966): 357-360
- Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature. 1970; 227 (5432063): 680-685
- Genetic applications of an inverse polymerase chain reaction.Genetics. 1988; 120 (2852134): 621-623
- An efficient one-step site-directed and site-saturation mutagenesis protocol.Nucleic Acids Res. 2004; 32 (15304544): e115
- Amplification and purification of plasmid-encoded thioredoxin from Escherichia coli K12.J. Biol. Chem. 1984; 259 (6381486): 10469-10474
- mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data.Anal. Chem. 2010; 82 (20465224): 4648-4651
- Fitting enzyme kinetic data with KinTek global kinetic explorer.Methods Enzymol. 2009; 467 (19897109): 601-626
- Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data.Anal. Biochem. 2009; 387 (19154726): 20-29
- 2016 update of the PRIDE database and its related tools.Nucleic Acids Res. 2016; 44 (26527722): D447-D456
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—T. L. D. and K. A. J. conceptualization; T. L. D. and K. A. J. formal analysis; T. L. D. investigation; T. L. D. methodology; T. L. D. writing-original draft; K. A. J. resources; K. A. J. software; K. A. J. supervision; K. A. J. funding acquisition; K. A. J. project administration; K. A. J. writing-review and editing.
Funding and additional information—This work was supported by NIGMS, National Institutes of Health, Grant 5R01GM114223 (to K. A. J.) and the Welch Foundation Grant F-1604 (to K. A. J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest—K. A. J. is president of KinTek Corporation, which provided the SF300x stopped-flow and RQF-3 rapid quench-flow instruments and KinTek Explorer software used in this study.
Abbreviations—The abbreviations used are: 7-HCou
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy