Results
Tumor-bearing male and female mice show evidence of cachexia
Male | Female | Combined | Condition | Gender | Interaction | ||||
---|---|---|---|---|---|---|---|---|---|
PBS (n = 10) | LLC1 (n = 7) | PBS (n = 10) | LLC1 (n = 7) | Pbs (n = 20) | LLC1 (n = 14) | F (p value) | F (p value) | F (p value) | |
Body mass Day 0 (g) | 22.9 ± 1.1 | 22.3 ± 1.1 | 18.3 ± 0.8 | 18.4 ± 1.0 | 20.6 ± 2.5 | 20.4 ± 2.3 | 0.384 (0.540) | 151.001 (<0.001) | 0.860 (0.361) |
Body mass Day 21 (g, excluding tumor mass) | 24.4 ± 0.9 | 22.3 ± 1.8 | 19.4 ± 0.6 | 18.5 ± 0.9 | 21.9 ± 2.6 | 20.4 ± 2.4 | 15.66 (<0.001) | 131.052 (<0.001) | 2.076 (0.160) |
Δ Body mass (g) | 1.51 ± 1.19 | -0.02 ± 1.74 | 1.15 ± 0.70 | 0.08 ± 0.56 | 1.33 ± 0.97 | 0.03 ± 1.24 | 11.22(0.002) | 0.122 (0.730) | 0.354 (0.556) |
Lean mass (g) | 19.2 ± 0.8 | 18.5 ± 1.0 | 15.2 ± 0.8 | 14.4 ± 0.9 | 17.2 ± 2.2 | 16.4 ± 2.3 | 7.06(0.013) | 188 (<0.001) | 0.018 (0.895) |
Fat mass (g) | 2.5 ± 0.3 | 1.9 ± 0.3 | 2.5 ± 0.5 | 2.3 ± 0.3 | 2.5 ± 0.4 | 2.1 ± 0.4 | 7.45(0.011) | 1.61 (0.214) | 2.391 (0.133) |
Fat mass (%) | 10.3 ± 1.0 | 8.6 ± 1.3 | 12.7 ± 2.7 | 12.5 ± 1.7 | 11.5 ± 2.4 | 10.6 ± 2.5 | 2.04(0.164) | 24.17 (<0.001) | 1.257 (0.271) |
Quadriceps mass (mg) | 195 ± 18 | 180 ± 21 | 144 ± 15 | 126 ± 17 | 170 ± 31 | 153 ± 34 | 7.504(0.010) | 74.07(<0.001) | 0.044 (0.835) |
Gastrocnemius mass (mg) | 143 ± 14 | 129 ± 10 | 105 ± 4 | 95 ± 8 | 124 ± 22 | 112 ± 20 | 12.767(0.001) | 109.225(<0.001) | 0.214 (0.647) |
Grip strength (Newtons) | 1.003 ± 0.092 | 0.909 ± 0.113 | 1.035 ± . 0.63 | 0.933 ± 0.090 | 1.019 ± 0.078 | 0.921 ± 0.099 | 10.02(0.004) | 0.832 (0.369) | 0.012 (0.912) |
Tumor-bearing mice exhibit decreased protein synthesis rates but no difference in fiber-type composition

Changes in mitochondrial morphology and reduced coupling efficiency are observed in tumor-bearing mice

Pathway analysis of whole transcriptome RNA-sequencing indicates protein breakdown, inflammation, and extracellular matrix alterations in tumor-bearing mice

Metabolomic profiling reveals increased levels of methylarginines in the plasma and skeletal muscle of tumor bearing mice

ADMA and l-NMMA inhibit protein synthesis in cultured myotubes

Alterations in methylarginine-, insulin signaling-, and mTOR-related transcripts are observed in the skeletal muscle of tumor-bearing mice
ADMA impairs mitochondrial protein quality

Cancer patients exhibiting evidence of cachexia have increased levels of ADMA in the skeletal muscle

Discussion
- Guido C.
- Whitaker-Menezes D.
- Lin Z.
- Pestell R.G.
- Howell A.
- Zimmers T.A.
- Casimiro M.C.
- Aquila S.
- Ando S.
- Martinez-Outschoorn U.E.
- Sotgia F.
- Lisanti M.P.
Materials and methods
Animal use
Cell culture
Human studies
Fractional protein synthesis
- Lanza I.R.
- Zabielski P.
- Klaus K.A.
- Morse D.
- Heppelmann C.J.
- Bergen H.R.
- Dasari S.
- Walrand S.
- Short K.R.
- Johnson M.L.
- Robinson M.M.
- Schimke J.M.
- Jakaitis D.R.
- Asmann
- Yan W.
- Sun Z.
- et al.
Immunofluorescent fiber type staining
Transmission EM
Immunoblotting
Respiration and ROS production
- Lanza I.R.
- Zabielski P.
- Klaus K.A.
- Morse D.
- Heppelmann C.J.
- Bergen H.R.
- Dasari S.
- Walrand S.
- Short K.R.
- Johnson M.L.
- Robinson M.M.
- Schimke J.M.
- Jakaitis D.R.
- Asmann
- Yan W.
- Sun Z.
- et al.
- Biesemann N.
- Ried J.S.
- Ding-Pfennigdorff D.
- Dietrich A.
- Rudolph C.
- Hahn S.
- Hennerici W.
- Asbrand C.
- Leeuw T.
- Strübing C.
RNA-Seq
Untargeted metabolomics analysis
SUnSET protein synthesis assay
Statistical analysis
Data availability
Acknowledgments
References
- Cachexia: a new definition.Clin. Nutr. 2008; 27 (18718696): 793-799
- Definition and classification of cancer cachexia: an international consensus.Lancet Oncol. 2011; 12: 489-495
- Understanding the mechanisms and treatment options in cancer cachexia.Nat. Rev. Clin. Oncol. 2013; 10 (23207794): 90-99
- Cachexia in cancer patients.Nat. Rev. Cancer. 2002; 2 (12415256): 862-871
- Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem.Trends Endocrinol. Metab. 2013; 24 (23201432): 174-183
- Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies.Annu. Rev. Med. 2011; 62 (20731602): 265-279
- Mechanisms of cancer cachexia.Physiol. Rev. 2009; 89 (19342610): 381-410
- Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer.Cancer Res. 1985; 45 (2988769): 3347-3353
- Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice.J. Cachexia Sarcopenia Muscle. 2018; 9 (30328290): 987-1002
- Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice.J. Cachexia Sarcopenia Muscle. 2017; 8 (28845591): 926-938
- The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.Semin. Cell Dev. Biol. 2016; 54 (26593326): 53-67
- Human cachexia induces changes in mitochondria autophagy apoptosis skeletal muscle.Cancers. 2019; 111264
- Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity.Int. J. Biochem. Cell Biol. 2013; 45 (23608519): 1399-1409
- Mitochondrial fission and remodelling contributes to muscle atrophy.EMBO J. 2010; 29 (20400940): 1774-1785
- Oxidation enhances myofibrillar protein degradation via calpain and caspase-3.Free Radic. Biol. Med. 2010; 49 (20600829): 1152-1160
- Hydrogen peroxide impairs insulin-stimulated assembly of mTORC1.Free Radic. Biol. Med. 2009; 46 (19281842): 1500-1509
- Mitochondria as a target for mitigating sarcopenia.Front. Physiol. 2018; 9 (30687111)1883
- Energy uptake and allocation during ontogeny.Science. 2008; 322 (18974352): 736-739
- Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.Physiol. Genomics. 2017; 49 (28341621): 253-260
- Diaphragm muscle sarcopenia in aging mice.Exp. Gerontol. 2013; 48 (23792145): 881-887
- Analysis of muscle fiber clustering in the diaphragm muscle of sarcopenic mice.Muscle Nerve. 2015; 52: 76-82
- Mitochondrial morphology transitions and functions: implications for retrograde signaling?.Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 304 (23364527): R393-R406
- Autophagy is induced in the skeletal muscle of cachectic cancer patients.Sci. Rep. 2016; 6 (27459917)30340
- Activity level, apoptosis, and development of cachexia in Apc(Min/+) mice.J. Appl. Physiol. (1985). 2010; 109 (20651218): 1155-1161
- Molecular pathways: cachexia signaling: a targeted approach to cancer treatment.Clin. Cancer Res. 2016; 22 (27340276): 3999-4004
- Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients.Am. J. Clin. Nutr. 2013; 98: 1485-1492
- Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients.Clin. Nutr. 2007; 26 (17688974): 614-618
- FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway.Autophagy. 2012; 8 (22931788): 1712-1723
- Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.Physiol. Genomics. 2018; 50 (30289747): 1071-1082
- Biological significance of endogenous methylarginines that inhibit nitric oxide synthases.Cardiovasc. Res. 1999; 43 (10690326): 542-548
- L-Arginine enhances protein synthesis by phosphorylating mTOR (Thr 2446) in a nitric oxide-dependent manner in C2C12 cells.Oxid. Med. Cell Longev. 2018; 2018 (29854093)7569127
- SUnSET, a nonradioactive method to monitor protein synthesis.Nat. Methods. 2009; 6 (19305406): 275-277
- Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle.Sci. Rep. 2018; 82133
- Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover.Diabetologia. 2006; 49: 351-359
- Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA.Vasc. Med. 2005; 10 (16444867): S35-43
- Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide.Science. 2003; 299 (12574632): 896-899
- Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15545607): 16507-16512
- Muscle wasting in cancer: the role of mitochondria.Curr. Opin. Clin. Nutr. Metab. Care. 2015; 18 (25769061): 221-225
- Mitochondrial dynamics in cancer-induced cachexia.Biochim. Biophys. Acta. 2018; 1870 (30059724): 137-150
- Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.Curr. Opin. Clin. Nutr. Metab. Care. 2015; 18 (25783794): 226-233
- Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia.Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019; 317: R68-R82
- Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency.J. Cachexia Sarcopenia Muscle. 2012; 3 (22648737): 265-275
- Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.Int. J. Oncol. 2013; 43: 886-894
- Cachexia: a problem of energetic inefficiency.J. Cachexia Sarcopenia Muscle. 2014; 5 (25118829): 279-286
- Mitochondrial dynamics–mitochondrial fission and fusion in human diseases.N. Engl. J. Med. 2013; 369 (24304053): 2236-2251
- Mitochondrial fission, fusion, and stress.Science. 2012; 337 (22936770): 1062-1065
- Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation.Oxid. Med. Cell Longev. 2017; 2017 (28785374)3292087
- Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency?.Biochim. Biophys. Acta. 2013; 1830 (23200745): 2770-2778
- Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.Oncotarget. 2012; 3 (22878233): 798-810
- Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia.Exp. Gerontol. 2017; 87 (27847330): 92-99
- IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse.Skelet. Muscle. 2012; 2 (22769563): 14
- Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice.Oncotarget. 2015; 6 (26053100): 17923-17937
- During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.Nat. Cell Biol. 2011; 13 (21478857): 589-598
- Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response.Biochim. Biophys. Acta. 2013; 1833 (22683990): 417-424
- Watching the watcher: regulation of p53 by mitochondria.Future Oncol. 2009; 5 (19243304): 117-130
- Mitofusin-2 is a novel direct target of p53.Biochem. Biophys. Res. Commun. 2010; 400 (20804729): 587-592
- Mitochondrial death functions of p53.Mol. Cell Oncol. 2014; 1 (27308326)e955995
- Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting.Aging (Albany NY). 2012; 4 (22361433): 133-143
- Cancer-associated cachexia.Nat. Rev. Dis. Primers. 2018; 4 (29345251)17105
- Cancer cachexia: mediators, signaling, and metabolic pathways.Cell. Metab. 2012; 16 (22795476): 153-166
- Modulating metabolism to improve cancer-induced muscle wasting.Oxid. Med. Cell Longev. 2018; 2018 (29785246)7153610
- Cancer cachexia, mechanism and treatment.World J. Gastrointest. Oncol. 2015; 7 (25897346): 17-29
- Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia.BMC Cancer. 2014; 14 (25539728): 997
- Skeletal muscle fibrosis in pancreatic cancer patients with respect to survival.JNCI Cancer Spectr. 2018; 2 (30637373)pky043
- Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase.Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1455-1459
- Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function.J. Biol. Chem. 2007; 282 (17082183): 879-887
- Plasma concentrations of asymmetric dimethylarginine (ADMA) in metabolic syndrome.Int. J. Cardiol. 2007; 122 (17234281): 176-178
- Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production.Pharmacol. Res. 2009; 60 (19682581): 461-465
- Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects.Circulation. 2003; 107: 1891-1895
- Insulin signalling and the regulation of glucose and lipid metabolism.Nature. 2001; 414 (11742412): 799-806
- Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load.J. Biol. Chem. 2002; 277 (11884412): 17657-17662
- Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice.Int. J. Cancer. 2010; 126 (19634137): 756-763
- Insulin resistance and body composition in cancer patients.Ann. Oncol. 2018; 29 (29506229): ii18-ii26
- A review of cancer cachexia and abnormal glucose metabolism in humans with cancer.J. Am. Coll. Nutr. 1992; 11 (1506607): 445-456
- Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice.PLoS ONE. 2019; 14 (31851697)e0226440
- Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine predict adverse events in patients undergoing noncardiac surgery.Crit. Care Med. 2007; 35 (17581491): 1876-1881
- Evaluation of muscle performance in mice by treadmill exhaustion test and whole-limb grip strength assay.Bio. Protoc. 2017; 7 (28713848)e2237
- In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins.Am. J. Physiol. Endocrinol. Metab. 2008; 295 (18765679): E1255-E1268
- Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice.Aging Cell. 2015; 14 (26010060): 734-743
- Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults.Aging (Albany NY). 2017; 9 (28379838): 1096-1129
- Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis.Cell Metab. 2012; 16 (23217257): 777-788
- Functional assessment of isolated mitochondria in vitro.Methods Enzymol. 2009; 457 (19426878): 349-372
- Structure-activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions.Respir. Physiol. Neurobiol. 2012; 180 (22063925): 88-96
- The ImageJ ecosystem: an open platform for biomedical image analysis.Mol. Reprod. Dev. 2015; 82 (26153368): 518-529
- NIH Image to ImageJ: 25 years of image analysis.Nat. Methods. 2012; 9 (22930834): 671-675
- Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency.Am. J. Physiol. Cell Physiol. 2005; 289 (15901599): C881-C890
- RIPA lysis buffer.Cold Spring Harb. Protoc. 2017; (pdb.rec101428)
- Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans.J. Clin. Invest. 2009; 119 (19188683): 573-581
- Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.Int. J. Biochem. Cell Biol. 2009; 41 (19467914): 1837-1845
- Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle.Biochem. J. 2011; 437: 215-222
- Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production.Methods Mol. Biol. 2015; 1264 (25631019): 245-261
- High throughput screening of mitochondrial bioenergetics in human differentiated myotubes identifies novel enhancers of muscle performance in aged mice.Sci. Rep. 2018; 8 (29925868)9408
- Research resource: whole transcriptome RNA sequencing detects multiple 1α,25-dihydroxyvitamin D3-sensitive metabolic pathways in developing zebrafish.Mol. Endocrinol. 2012; 26 (22734042): 1630-1642
- 1α,25-Dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells.J. Biol. Chem. 2016; 291 (26601949): 1514-1528
- The reactome pathway knowledgebase.Nucleic Acids Res. 2020; 48 (31691815): D498-D503
- The molecular signatures database (MSigDB) hallmark gene set collection.Cell Syst. 2015; 1 (26771021): 417-425
- Molecular signatures database (MSigDB) 3.0.Bioinformatics. 2011; 27 (21546393): 1739-1740
- Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (16199517): 15545-15550
- Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis.Curr. Protoc. Bioinformatics. 2019; 68 (31756036): e86
- BioVenn: a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams.BMC Genomics. 2008; 9 (18925949): 488
Article info
Publication history
Footnotes
Author contributions—H. E. K., A. J., R. K., and I. R. L. conceptualization; H. E. K., J. M. D., T. E. B., R. K., and I. R. L. data curation; H. E. K., J. M. D., T. E. B., T. M., X. W., R. K., and I. R. L. formal analysis; H. E. K., R. K., and I. R. L. investigation; H. E. K., J. M. D., T. E. B., T. M., and I. R. L. methodology; H. E. K., R. K., and I. R. L. writing-original draft; H. E. K., X. W., R. K., and I. R. L. writing-review and editing; X. W. visualization; A. J., R. K., and I. R. L. funding acquisition; R. K. and I. R. L. supervision; R. K. and I. R. L. project administration; I. R. L. resources.
Funding and additional information—This work was supported by a grant from the Fred C. and Katherine B. Andersen Foundation (to I. R. L. and R. K.). Dr. Hawley Kunz is supported by T32AR056950.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Present address for Jessica M. Dorschner: Oakland University, Auburn Hills, Michigan, USA.
Present address for Thomas Meyer: Amherst College, Amherst, Massachusetts, USA.
Abbreviations—The abbreviations used are: ROS
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy