Results
Aminopeptidase N contains canonical 14-3-3–binding motifs

Phosphorylated APN pSer43 binds extracellular 14-3-3

Crystal structure of bound APN 38–46 pSer43
PDB entry | 6XWD | 7AEW |
Crystal data | ||
Space group | C2221 | C2221 |
Cell dimensions | ||
a, b, c (Å) | 82.0, 111.6, 62.4 | 82.2, 112.1, 62.6 |
α, β, γ (degrees) | 90.0, 90.0, 90.0 | 90.0, 90.0, 90.0 |
Molecules/asymmetric unit | 1 | 1 |
Wavelength (Å) | 0.911650 | 0.911650 |
Resolution limits (Å) | 45.37–1.60 (1.70–1.60) | 45.52–1.20 (1.30–1.20) |
Unique reflections | 38,136 (6243) | 86,519 (16,344) |
Completeness (%) | 100.00 (100.00) | 95.8 (85.8) |
Multiplicity | 13.45 (13.65) | 13.41 (10.16) |
I/σI | 15.06 (2.66) | 19.82 (2.27) |
CC½ | 99.9 (87.9) | 100.0 (85.4) |
Robs (%) | 10.7 (75.4) | 5.8 (81.9) |
Rmeas (%) | 11.1 (78.4) | 6.0 (85.6) |
Refinement | ||
Resolution limits (Å) | 45.37–1.60 (1.70–1.60) | 45.52–1.20 (1.30–1.20) |
Rwork/Rfree (%) | 16.76/19.62 | 16.18/18.36 |
Root mean square deviation | ||
Bond length (Å) | 0.006 | 0.015 |
Bond angle (degrees) | 0.778 | 1.876 |
B-factor (Å3) | 19.97 | 17.76 |
No. of atoms | ||
Protein | 2004 | 2103 |
Peptide | 67 | 102 |
Ligand/ion | 5 | 5 |
Water | 419 | 426 |
Ramachandran (%) | ||
Favored | 98.3 | 97.3 |
Allowed | 1.7 | 2.7 |
Outliers | 0.0 | 0.0 |

Second noncanonical 14-3-3 motif increases affinity


Discussion
Experimental procedures
Prediction of 14-3-3–binding sites in APN
Peptide synthesis and purification
Protein expression
FP assay
Fluorescence polarization competition assay
Pulldown assay
Protein crystallization and X-ray structure determination
ITC
Data availability
Acknowledgments
Supplementary Material
References
- The structure and main functions of aminopeptidase N.Curr. Med. Chem. 2007; 14 (17346152): 639-647
- Aminopeptidase N (CD13) as a target for cancer chemotherapy.Cancer Sci. 2011; 102 (21205077): 501-508
- The x-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing.J. Biol. Chem. 2012; 287 (22932899): 36804-36813
- Aminopeptidase N in arterial hypertension.Heart Fail. Rev. 2008; 13 (18008160): 293-298
- Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae.J. Virol. 2004; 78 (15280478): 8701-8708
- The moonlighting enzyme CD13: old and new functions to target.Trends Mol. Med. 2008; 14 (18603472): 361-371
- Molecular analysis of the coronavirus-receptor function of aminopeptidase N.Adv. Exp. Med. Biol. 1998; 440 (9782265): 61-67
- Differentiated keratinocyte-releasable stratifin (14-3-3 Sigma) stimulates MMP-1 expression in dermal fibroblasts.J. Invest. Dermatol. 2005; 124 (15654971): 170-177
- Extracellular 14-3-3 from human lung epithelial cells enhances MMP-1 expression.Mol. Cell. Biochem. 2012; 360 (21948273): 261-270
- Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts.J. Invest. Dermatol. 2004; 122 (15140222): 1188-1197
- 14-3-3σ associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1.J. Cell Sci. 2010; 123 (20699358): 2996-3005
- 14-3-3ε protein increases matrix metalloproteinase-2 gene expression via p38 MAPK signaling in NIH3T3 fibroblast cells.Exp. Mol. Med. 2009; 41 (19322035): 453-461
- Matrix metalloproteinases: a review.Crit. Rev. Oral Biol. Med. 1993; 4 (8435466): 197-250
- 14-3-3η is a novel mediator associated with the pathogenesis of rheumatoid arthritis and joint damage.Arthritis Res. Ther. 2014; 16 (24751211): R99
- Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.J. Cell. Biochem. 2006; 98 (16440305): 383-393
- New functions for the matrix metalloproteinases in cancer progression.Nat. Rev. Cancer. 2002; 2 (11990853): 161-174
- Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention.J. Clin. Invest. 1999; 103 (10225966): 1237-1241
- 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins.Trends Biochem. Sci. 1992; 17 (1471260): 498-501
- How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis.FEBS Lett. 2002; 513 (11911880): 53-57
- 14-3-3 proteins; bringing new definitions to scaffolding.Oncogen. 2001; 20 (11607836): 6331-6338
- 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.J. Biol. Chem. 1998; 273 (9632691): 16305-16310
- The structural basis for 14-3-3: phosphopeptide binding specificity.Cell. 1997; 91 (9428519): 961-971
- Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding.Biochem. Biophys. Res. Commun. 2017; 493 (28943433): 940-945
- Mechanism of IRSp53 inhibition by 14-3-3.Nat. Commun. 2019; 10 (30696821): 483
- Recognition of an intra-chain tandem 14-3-3 binding site within PKCε.EMBO Rep. 2009; 10 (19662078): 983-989
- Structural interface between LRRK2 and 14-3-3 protein.Biochem. J. 2017; 474 (28202711): 1273-1287
- SPARC/SFN interaction, suppresses type I collagen in dermal fibroblasts.J. Cell. Biochem. 2012; 113 (22422640): 2622-2632
- Topical application of a film-forming emulgel dressing that controls the release of stratifin and acetylsalicylic acid and improves/prevents hypertrophic scarring.Wound Repair Regen. 2013; 21 (23126516): 55-65
- The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage.J. Cell Sci. 2015; 128 (26208633): 3250-3262
- Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein–protein interactions.Chem. Commun. 2013; 49 (23939230): 8468-8470
- Structure-based design of non-natural macrocyclic peptides that inhibit protein-protein interactions.J. Med. Chem. 2017; 60 (29028171): 8982-8988
- Structural basis of 14-3-3 protein functions.Semin. Cell Dev. Biol. 2011; 22 (21920446): 663-672
- Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.Cell. 1996; 84 (8601312): 889-897
- 14-3-3 proteins—an update.Cell Res. 2005; 15 (15857577): 228-236
- Unlocking the code of 14-3-3.J. Cell Sci. 2004; 117 (15090593): 1875-1884
- 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.Bioinformatics. 2015; 31 (25735772): 2276-2283
- SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.Electrophoresis. 1997; 18 (9504803): 2714-2723
- A series of PDB related databases for everyday needs.Nucleic Acids Res. 2011; 39: 411-419
- Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features.Biopolymers. 1983; 22 (6667333): 2577-2637
- MRS: A fast and compact retrieval system for biological data.Nucleic Acids Res. 2005; 33: 766-769
- Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.J. Mol. Biol. 1999; 294 (10600390): 1351-1362
- PhosphoNET.Kinexus Bioinformatics Corp., Vancouver, Canada2017
- Extracellular functions of 14-3-3 adaptor proteins.Cell. Signal. 2017; 31 (27993556): 26-30
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 Å resolution.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010; 66 (20823509): 978-984
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix.Acta Crystallogr. D Struct. Biol. 2019; 75 (31588918): 861-877
- Bioinformatic and experimental survey of 14-3-3-binding sites.Biochem. J. 2010; 427 (20141511): 69-78
- Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to One 14-3-3ζ dimer.J. Mol. Biol. 2012; 423 (22922483): 486-495
- Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.Proc. Natl. Acad. Sci. U. S. A. 2016; 113 (26888287): E1152-E1161
- Tricine-SDS-PAGE.Nat. Protoc. 2006; 1 (17406207): 16-22
- XDS.Acta Crystallogr. D. Biol. Crystallogr. 2010; 66 (20124692): 125-132
- REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460454): 355-367
- Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau.FASEB J. 2015; 29 (26103986): 4133-4144
- Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator.Structure. 2017; 25 (28089448): 305-316
- Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners.Sci. Rep. 2017; 7 (28931924): 1-12
- Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling.Mol. Cell Biol. 2010; 30 (20679480): 4698-4711
Article info
Publication history
Footnotes
This article contains supporting information.
Author contributions—S. K. and S. H. data curation; S. K., C. O., and S. H. formal analysis; S. K. and S. H. validation; S. K., C. O., and S. H. investigation; S. K. and S. H. visualization; S. K., C. O., and S. H. methodology; S. K. and S. H. writing-original draft; S. K., C. O., and S. H. writing-review and editing; C. O. and S. H. conceptualization; S. H. resources; S. H. supervision; S. H. funding acquisition; S. H. project administration.
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Abbreviations—The abbreviations used are: APN
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy