Advertisement

New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase.

      This paper is only available as a PDF. To read, Please Download here.
      The synthesis of fluorescent derivatives of cAMP and cGMP, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding 2'-O-anthraniloyl derivatives of cyclic nucleotides, is here described. 2'-O-(N-Methylanthraniloyl) derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm, these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.11-0.26. Their fluorescence was sensitive to the polarity of solvent; in N,N-dimethylformamide quantum yields of 0.8-0.95. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield. The derivatives were substrates for beef heart cyclic nucleotide phosphodiesterase, 15-24% as effective as the natural substrate cAMP. When combined with thin layer chromatography techniques, two apparent Km values (3-4 microM and 36-76 microM) for the cAMP derivatives and one value (10-18 microM) for the cGMP derivatives were obtained. The results indicate that these 2'-hydroxyl-modified cAMP and cGMP can be useful fluorescent substrate analogs for cyclic nucleotide phosphodiesterase.

      REFERENCES

        • Miller J.P.
        • Shuman D.A.
        • Scholten M.B.
        • Dimmitt M.K.
        • Stewart C.M.
        • Khwaja T.A.
        • Robins R.K.
        • Simon L.N.
        Biochemistry. 1973; 12: 1010-1016
        • Miller J.P.
        • Boswell K.H.
        • Muneyama K.
        • Simon L.N.
        • Robins R.K.
        • Shuman D.A.
        Biochemistry. 1973; 12: 5310-5319
        • Secrist III, J.A.
        • Barrio J.R.
        • Leonard N.J.
        • Villar-Palasi C.
        • Gilman A.G.
        Science. 1972; 177: 279-280
        • Tsou K.C.
        • Yip K.F.
        • Lo K.W.
        Anal. Biochem. 1974; 60: 163-169
        • Haugland R.P.
        • Stryer L.
        Ramachandran G.N. Conformation of Biopolymers. Vol. 1. Academic Press, New York1967: 321-335
        • Trzos W.
        • Reed J.K.
        FEBS Lett. 1981; 127: 196-200
        • Staiger R.P.
        • Miller E.B.
        J. Org. Chem. 1959; 24: 1214-1219
        • Beavo J.A.
        • Hardman J.G.
        • Sutherland E.W.
        J. Biol. Chem. 1970; 245: 5649-5655
        • Goren E.N.
        • Rosen O.M.
        Arch. Biochem. Biophys. 1972; 153: 384-397
        • Hiratsuka T.
        • Uchida K.
        J. Biochem. (Tokyo). 1980; 88: 1437-1448
        • Scott T.G.
        • Spencer R.D.
        • Leonard N.J.
        • Weber G.
        J. Am. Chem. Soc. 1970; 92: 687-695
        • Butcher R.W.
        • Sutherland E.W.
        J. Biol. Chem. 1962; 237: 1244-1250
        • Fiske C.H.
        • Subbarow Y.
        J. Biol. Chem. 1925; 66: 375-400
        • Falbriard J.-G.
        • Posternak T.
        • Sutherland E.W.
        Biochim. Biophys. Acta. 1967; 148: 99-105
        • Hofstee B.H.J.
        Science. 1952; 116: 329-331
        • Robins M.J.
        • Naik S.R.
        • Lee A.S.K.
        J. Org. Chem. 1974; 39: 1891-1899
        • Zamecnik P.C.
        Biochem. J. 1962; 85: 257-264
        • McLaughlin C.S.
        • Ingram V.M.
        Biochemistry. 1965; 4: 1448-1456