Advertisement

Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Tuberous Sclerosis Tumor Suppressor Complex by Phosphorylation of Tuberin*

  • Han C. Dan
    Footnotes
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Mei Sun
    Footnotes
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Lin Yang
    Footnotes
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Richard I. Feldman
    Affiliations
    Cancer Research Department, Berlex Biosciences, Richmond, California 94804, the
    Search for articles by this author
  • Xue-Mei Sui
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Chien Chen Ou
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Mark Nellist
    Affiliations
    Department of Clinical Genetics, Erasmus University, 3015 GE Rotterdam, The Netherlands
    Search for articles by this author
  • Raymond S. Yeung
    Affiliations
    University of Washington Medical Center, Seattle, Washington 98195, and the
    Search for articles by this author
  • Dicky J.J. Halley
    Affiliations
    Department of Clinical Genetics, Erasmus University, 3015 GE Rotterdam, The Netherlands
    Search for articles by this author
  • Santo V. Nicosia
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Warren J. Pledger
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Jin Q. Cheng
    Correspondence
    To whom correspondence should be addressed: University of South Florida College of Medicine and H. Lee Moffitt Cancer Center, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL 33612. Tel.: 813-974-8595;
    Affiliations
    Department of Pathology, Molecular Oncology, and Drug Discovery Programs, University of South Florida College of Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, the
    Search for articles by this author
  • Author Footnotes
    * This work was supported by NCI, National Institutes of Health Grants CA77935 and CA89242 and Department of Defense Grants DAMD17-00-0559 and DAMD17-01-1-0394.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
    § These authors contributed equally to this work.
Open AccessPublished:September 20, 2002DOI:https://doi.org/10.1074/jbc.M205838200
      Normal cellular functions of hamartin and tuberin, encoded by the TSC1 and TSC2tumor suppressor genes, are closely related to their direct interactions. However, the regulation of the hamartin-tuberin complex in the context of the physiologic role as tumor suppressor genes has not been documented. Here we show that insulin or insulin growth factor (IGF) 1 stimulates phosphorylation of tuberin, which is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the mitogen-activated protein kinase inhibitor PD98059. Expression of constitutively active PI3K or active Akt, including Akt1 and Akt2, induces tuberin phosphorylation. We further demonstrate that Akt/PKB associates with hamartin-tuberin complexes, promoting phosphorylation of tuberin and increased degradation of hamartin-tuberin complexes. The ability to form complexes, however, is not blocked. Akt also inhibits tuberin-mediated degradation of p27kip1, thereby promoting CDK2 activity and cellular proliferation. Our results indicate that tuberin is a direct physiological substrate of Akt and that phosphorylation of tuberin by PI3K/Akt is a major mechanism controlling hamartin-tuberin function.
      Tuberous sclerosis complex (TSC)
      The abbreviations used are: TSC, tuberous sclerosis complex; PI3K, phosphatidylinositol 3-kinase; HA, hemagglutinin; IGF, insulin-like growth factor; PKB, protein kinase B; MAPK, mitogen-activated protein kinase; HEK, human embryonic kidney; GST, glutathione S-transferase; CDK, cyclin-dependent kinase.
      1The abbreviations used are: TSC, tuberous sclerosis complex; PI3K, phosphatidylinositol 3-kinase; HA, hemagglutinin; IGF, insulin-like growth factor; PKB, protein kinase B; MAPK, mitogen-activated protein kinase; HEK, human embryonic kidney; GST, glutathione S-transferase; CDK, cyclin-dependent kinase.
      is an autosomal dominant disorder and is characterized by the presence of hamartomas in many organs such as brain, skin, heart, lung, and kidney (
      • Cheadle J.P.
      • Reeve M.P.
      • Sampson J.R.
      • Kwiatkowski D.J.
      ). It is caused by mutation of either the TSC1 or TSC2tumor suppressor gene (
      • van Slegtenhorst M.
      • de Hoogt R.
      • Hermans C.
      • Nellist M.
      • Janssen B.
      • Verhoef S.
      • Lindhout D.
      • van den Ouweland A.
      • Halley D.
      • et al.
      ,
      • Plank T.L.
      • Yeung R.S.
      • Henske E.P.
      ,
      • van Slegtenhorst M.
      • Nellist M.
      • Nagelkerken B.
      • Cheadle J.
      • Snell R.
      • van den Ouweland A.
      • Reuser A.
      • Sampson J.
      • Halley D.
      • van der Sluijs P.
      ,
      • Hengstschlager M.
      • Rodman D.M.
      • Miloloza A.
      • Hengstschlager-Ottnad E.
      • Rosner M.
      • Kubista M.
      ). TSC1 encodes a protein, hamartin, containing two coiled-coil domains that have been shown to mediate binding to hamartin (
      • Hodges A.K., Li, S.
      • Maynard J.
      • Parry L.
      • Braverman R.
      • Cheadle J.P.
      • DeClue J.E.
      • Sampson J.R.
      ). The TSC2 gene codes for tuberin, which contains a small region of homology to the rap1GTPase-activating protein, rap1GAP (
      • Nellist M.
      • Jansen B.
      • Brook-Carter P.T.
      • Hesseling-Janssen A.L.W.
      • Maheshwar M.M.
      • Verhoef S.
      • Van den Ouweland A.M.W.
      • Lindhout D.
      • Eussen B.
      • Cordeiro I.
      • Santos H.
      • Hally D.J.J.
      • Sampson J.R.
      • Ward C.J.
      • Peral B.
      • Thomas S.
      • Hughes J.
      • Harris P.C.
      • Roelfsema J.H.
      • Saris J.J.
      • Spruit L.
      • Peters D.J.M.
      • Dauwerse J.G.
      • Breuning M.H.
      ). These two proteins function within the same pathway(s) regulating cell cycle, cell growth, adhesion, and vesicular trafficking (
      • van Slegtenhorst M.
      • Nellist M.
      • Nagelkerken B.
      • Cheadle J.
      • Snell R.
      • van den Ouweland A.
      • Reuser A.
      • Sampson J.
      • Halley D.
      • van der Sluijs P.
      ,
      • Hengstschlager M.
      • Rodman D.M.
      • Miloloza A.
      • Hengstschlager-Ottnad E.
      • Rosner M.
      • Kubista M.
      ). However, the regulation of hamartin and tuberin in the context of physiologic role as tumor suppressor genes has not been documented.
      Among the various properties of these two proteins, the ability to interact and to form stable complex has been the most consistent finding. This led to the hypothesis that hamartin and tuberin function as a complex and that factors regulating their interaction are important in understanding physiologic roles. There is evidence to suggest that phosphorylation of tuberin may be a major mechanism of regulation of the hamartin-tuberin complex (
      • Aicher L.D.
      • Campbell J.S.
      • Yeung R.S.
      ,
      • Nellist M.
      • Verhaaf B.
      • Goedbloed M.A.
      • Reuser A.J.
      • van Den Ouweland A.M.
      • Halley D.J.J.
      ). However, the kinases that are responsible for phosphorylation of this complex are currently unknown. Recent Drosophila genetic studies showed thatdTsc1 and dTsc2 play an important role in the insulin/dPI3K/dakt signal transduction pathway by demonstrating that reduced cell size and cell proliferation caused by either mutations indINR and dakt or by overexpression ofdPTEN are overridden by homozygous mutants ofdTsc1 or dTsc2. This implies thatdTsc1 and dTsc2 are either direct downstream targets of dakt or on a parallel pathway of the insulin cascade downstream from dakt (
      • Potter C.J.
      • Huang H.
      • Xu T.
      ,
      • Tapon N.
      • Ito N.
      • Dickson B.J.
      • Treisman J.E.
      • Hariharan I.K.
      ,
      • Gao X.
      • Pan D.
      ,
      • Montagne J.
      • Radimerski T.
      • Thomas G.
      ). Akt, also known as protein kinase B (PKB), represents a subfamily of the serine/threonine protein kinase. Three isoforms of Akt have been identified including Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ, all of which are activated by growth factors and insulin in a PI3K-dependent manner and are inhibited by PTEN tumor suppressor (
      • Chan T.O.
      • Rittenhouse S.E.
      • Tsichlis P.N.
      ). Akt regulates a wide spectrum of cell functions, including cell survival, cell growth, differentiation, angiogenesis, and glucose metabolism, through phosphorylation of a number of proteins that contain the RXRXXS/T motif (
      • Chan T.O.
      • Rittenhouse S.E.
      • Tsichlis P.N.
      ,
      • Brazil D.P.
      • Hemmings B.A.
      ,
      • Brunet A.
      • Datta S.R.
      • Greenberg M.E.
      ).
      Here we show that Akt physically interacts with and phosphorylates tuberin, leading to degradation of the hamartin-tuberin complex and p27kip1 without interfering with hamartin-tuberin complex formation. Moreover, IGF1 and insulin induce tuberin phosphorylation, which is mediated by the PI3K/Akt pathway but not by the MAPK pathway. As a result, cyclin-dependent kinase (CDK) 2 activity, DNA synthesis, and S phase of the cell cycle are elevated. We thus have identified Akt as a major tuberin kinase to negatively regulate hamartin-tuberin tumor suppressor function by inducing degradation.

      DISCUSSION

      Recent studies have demonstrated that phosphorylation of hamartin and/or tuberin may play an important role in the formation of the tuberin-hamartin complex. Tuberin is phosphorylated at serine and tyrosine residues, and a disease-related TSC2 tyrosine 1571 mutation (Y1571H) nearly abolishes tuberin tyrosine phosphorylation and disrupts tuberin-hamartin binding, implying that the phosphorylation of tyrosine 1571 of TSC2 is required for tuberin-hamartin complex formation (
      • Aicher L.D.
      • Campbell J.S.
      • Yeung R.S.
      ,
      • Nellist M.
      • Verhaaf B.
      • Goedbloed M.A.
      • Reuser A.J.
      • van Den Ouweland A.M.
      • Halley D.J.J.
      ). Our study, however, shows that phosphorylation of tuberin by Akt and mitogenic factors (insulin and IGF1) abrogates hamartin-tuberin tumor suppressor activity without interfering with binding but by inducing degradation of both proteins through the proteosome pathway. Therefore, we provide a new paradigm for regulation of the TSC1/TSC2 tumor suppressor pathway.
      In addition to the Forkhead transcription factor family (
      • Brunet A.
      • Datta S.R.
      • Greenberg M.E.
      ,
      • Mohapatra S.
      • Agrawal D.
      • Pledger W.J.
      ), tuberin is the second Akt downstream target that has been uncovered by genetic studies so far. In this study, we present molecular evidence that tuberin is a direct physiological substrate of Akt by demonstrating that Akt binds to and phosphorylates tuberin. It has been documented that Akt induces cell cycle progression and cell proliferation through transcription repression and degradation of p27kip1 (
      • Medema R.H.
      • Kops G.J.
      • Bos J.L.
      • Burgering B.M.
      ,
      • Gesbert F.
      • Sellers W.R.
      • Signoretti S.
      • Loda M.
      • Griffin J.D.
      ). Akt inhibition of p27kip1transcription is achieved by Akt phosphorylation of a Forkhead transcription factor, AFX, leading to the decrease of p27kip1 promoter activity (
      • Gesbert F.
      • Sellers W.R.
      • Signoretti S.
      • Loda M.
      • Griffin J.D.
      ). However, the mechanism of Akt degradation of p27kip1 is unclear. Tuberin was revealed to stabilize p27kip1 by maintaining p27kip1 in the nucleus (
      • Soucek T.
      • Yeung R.S.
      • Hengstschlager M.
      ). We observed in this study that Akt attenuates the tuberin action but does not induce translocation of p27kip1 from nuclear to cytoplasm (data not shown). Previous studies have shown that three isoforms of Akt share almost the same upstream regulators and downstream targets. Similarly, we have observed that Akt1, Akt2, and Akt3 all phosphorylate and interact with tuberin, even though Akt2 displays a slightly higher binding affinity to tuberin. The model in Fig. 5illustrates the mechanism through which the PI3K/Akt pathway mediates insulin and IGF1 signals to down-regulate hamartin-tuberin function by phosphorylation of tuberin. Our results define a possible new mechanism through which Akt induces cell proliferation and transformation by inhibiting TSC1/TSC2 tumor suppressor functions.
      Figure thumbnail gr5
      Figure 5Schematic illustration of negative regulation of the TSC tumor suppressor complex by PI3K/Akt.

      ACKNOWLEDGEMENTS

      We thank the DNA Sequence and Flow Cytometry Facilities at the H. Lee Moffitt Cancer Center.

      REFERENCES

        • Cheadle J.P.
        • Reeve M.P.
        • Sampson J.R.
        • Kwiatkowski D.J.
        Hum. Genet. 2000; 107: 97-114
        • van Slegtenhorst M.
        • de Hoogt R.
        • Hermans C.
        • Nellist M.
        • Janssen B.
        • Verhoef S.
        • Lindhout D.
        • van den Ouweland A.
        • Halley D.
        • et al.
        Science. 1997; 277: 805-808
        • Plank T.L.
        • Yeung R.S.
        • Henske E.P.
        Cancer Res. 1998; 58: 4766-4770
        • van Slegtenhorst M.
        • Nellist M.
        • Nagelkerken B.
        • Cheadle J.
        • Snell R.
        • van den Ouweland A.
        • Reuser A.
        • Sampson J.
        • Halley D.
        • van der Sluijs P.
        Hum. Mol. Genet. 1998; 7: 1053-1057
        • Hengstschlager M.
        • Rodman D.M.
        • Miloloza A.
        • Hengstschlager-Ottnad E.
        • Rosner M.
        • Kubista M.
        Mutat. Res. 2001; 488: 233-239
        • Hodges A.K., Li, S.
        • Maynard J.
        • Parry L.
        • Braverman R.
        • Cheadle J.P.
        • DeClue J.E.
        • Sampson J.R.
        Hum. Mol. Genet. 2001; 10: 2899-2905
        • Nellist M.
        • Jansen B.
        • Brook-Carter P.T.
        • Hesseling-Janssen A.L.W.
        • Maheshwar M.M.
        • Verhoef S.
        • Van den Ouweland A.M.W.
        • Lindhout D.
        • Eussen B.
        • Cordeiro I.
        • Santos H.
        • Hally D.J.J.
        • Sampson J.R.
        • Ward C.J.
        • Peral B.
        • Thomas S.
        • Hughes J.
        • Harris P.C.
        • Roelfsema J.H.
        • Saris J.J.
        • Spruit L.
        • Peters D.J.M.
        • Dauwerse J.G.
        • Breuning M.H.
        Cell. 1993; 75: 1305-1315
        • Aicher L.D.
        • Campbell J.S.
        • Yeung R.S.
        J. Biol. Chem. 2001; 276: 21017-21021
        • Nellist M.
        • Verhaaf B.
        • Goedbloed M.A.
        • Reuser A.J.
        • van Den Ouweland A.M.
        • Halley D.J.J.
        Hum. Mol. Genet. 2001; 10: 2889-2898
        • Potter C.J.
        • Huang H.
        • Xu T.
        Cell. 2001; 105: 357-368
        • Tapon N.
        • Ito N.
        • Dickson B.J.
        • Treisman J.E.
        • Hariharan I.K.
        Cell. 2001; 105: 345-355
        • Gao X.
        • Pan D.
        Genes Dev. 2001; 15: 1383-1392
        • Montagne J.
        • Radimerski T.
        • Thomas G.
        Sci. STKE. 2001; 105: PE36
        • Chan T.O.
        • Rittenhouse S.E.
        • Tsichlis P.N.
        Annu. Rev. Biochem. 1999; 68: 965-1014
        • Brazil D.P.
        • Hemmings B.A.
        Trends. Biochem. Sci. 2001; 26: 657-664
        • Brunet A.
        • Datta S.R.
        • Greenberg M.E.
        Curr. Opin. Neurobiol. 2001; 11: 297-305
        • Sun M.
        • Wang G.
        • Paciga J.E.
        • Feldman R.I.
        • Yuan Z.Q., Ma, X.L.
        • Shelley S.A.
        • Jove R.
        • Tsichlis P.N.
        • Nicosia S.V.
        • Cheng J.Q.
        Am. J. Pathol. 2001; 159: 431-437
        • Jiang K.
        • Coppola D.
        • Crespo N.C.
        • Nicosia S.V.
        • Hamilton A.D.
        • Sebti S.M.
        • Cheng J.Q.
        Mol. Cell. Biol. 2000; 20: 139-148
        • Nellist M.
        • van Slegtenhorst M.A.
        • Goedbloed M.
        • van den Ouweland A.M.
        • Halley D.J.
        • van der Sluijs P.
        J. Biol. Chem. 1999; 274: 35647-35652
        • Soucek T.
        • Yeung R.S.
        • Hengstschlager M.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 15653-15658
        • Soucek T.
        • Rosner M.
        • Miloloza A.
        • Kubista M.
        • Cheadle J.P.
        • Sampson J.R.
        • Hengstschlager M.
        Oncogene. 2001; 20: 4904-4909
        • Mohapatra S.
        • Agrawal D.
        • Pledger W.J.
        J. Biol. Chem. 2001; 276: 21976-21983
        • Medema R.H.
        • Kops G.J.
        • Bos J.L.
        • Burgering B.M.
        Nature. 2000; 404: 782-787
        • Gesbert F.
        • Sellers W.R.
        • Signoretti S.
        • Loda M.
        • Griffin J.D.
        J. Biol. Chem. 2000; 275: 39223-39230